login
A066360
Number of unordered solutions in positive integers of xy + xz + yz = n with gcd(x,y,z) = 1.
3
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 0, 3, 2, 1, 2, 2, 0, 3, 0, 3, 2, 2, 1, 4, 1, 1, 2, 4, 2, 4, 0, 2, 2, 2, 1, 5, 2, 2, 2, 4, 1, 3, 2, 4, 4, 2, 0, 6, 0, 3, 3, 4, 2, 4, 2, 2, 3, 4, 0, 7, 2, 2, 4, 4, 2, 4, 0, 5, 4, 3, 1, 6, 2, 2, 4, 6, 2, 6, 2, 4, 2, 2, 3, 8, 4, 2, 3, 4, 1
OFFSET
1,11
COMMENTS
These correspond to Descartes quadruples (-s, s+x+y, s+x+z, s+y+z) where s = sqrt(n), which are primitive if n is a perfect square.
Many empirical regularities are known, e.g., for n = 2^(2k) or n=2^(2k-1), (2 <= k <= 10 and even k <= 20), a(n) = 2^(k-2).
It appears that a(n) > 0 for n > 462. An upper bound on the number of solutions appears to be 1.5*sqrt(n). - T. D. Noe, Jun 14 2006
EXAMPLE
a(81) = 3 because we have the triples (x,y,z) = (1,1,40),(2,3,15),(3,6,7) (and not (3,3,12) because this is not primitive).
MATHEMATICA
Table[cnt=0; Do[z=(n-x*y)/(x+y); If[IntegerQ[z] && GCD[x, y, z]==1, cnt++ ], {x, Sqrt[n/3]}, {y, x, Sqrt[x^2+n]-x}]; cnt, {n, 100}] (* T. D. Noe, Jun 14 2006 *)
PROG
(Haskell)
a066360 n = length [(x, y, z) | x <- [1 .. a000196 n],
y <- [x .. div n x],
z <- [y .. n - x*y],
x*y+(x+y)*z == n, gcd (gcd x y) z == 1]
-- Reinhard Zumkeller, Mar 23 2012
CROSSREFS
Cf. A060790, A062536 (and A007875 for xy = n).
Sequence in context: A055639 A156542 A307990 * A061358 A025866 A259920
KEYWORD
nonn,nice
AUTHOR
Colin Mallows, Dec 20 2001
EXTENSIONS
Corrected and extended by T. D. Noe, Jun 14 2006
STATUS
approved