

A066321


Binary representation of base i1 expansion of n: replace i1 by 2 in base i1 expansion of n.


2



0, 1, 12, 13, 464, 465, 476, 477, 448, 449, 460, 461, 272, 273, 284, 285, 256, 257, 268, 269, 3280, 3281, 3292, 3293, 3264, 3265, 3276, 3277, 3088, 3089, 3100, 3101, 3072, 3073, 3084, 3085, 3536, 3537, 3548, 3549, 3520, 3521, 3532, 3533, 3344, 3345, 3356
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Here i = sqrt(1).
First differences follow a strange period16 pattern: 1 11 1 XXX 1 11 1 29 1 11 1 189 1 11 1 29 where XXX is given by A066322. Number of onebits is A066323.


REFERENCES

D. E. Knuth, The Art of Computer Programming. AddisonWesley, Reading, MA, 1969, Vol. 2, p. 172, (Also exercise 16, p. 177, answer, p. 494)


LINKS

Table of n, a(n) for n=0..46.


FORMULA

In "rebase notation" a(n) = (i1)[n]2.


EXAMPLE

a(4) = 464 = 2^8+2^7+2^6+2^4 since (i1)^8+(i1)^7+(i1)^6+(i1)^4 = 4.


CROSSREFS

Cf. A066322, A066323.
Sequence in context: A041308 A041309 A041310 * A099415 A042293 A061097
Adjacent sequences: A066318 A066319 A066320 * A066322 A066323 A066324


KEYWORD

base,easy,nonn


AUTHOR

Marc LeBrun, Dec 14 2001


STATUS

approved



