OFFSET
2,1
COMMENTS
For n > 2, a(n) <= n^2/2 - 3*n^2/2 + 2, which is (k^2+n)/(n^2+k) for k = n^2 - 2*n + 2. - Robert Israel, Nov 18 2020
LINKS
Robert Israel, Table of n, a(n) for n = 2..2500
MAPLE
f:= proc(n) local S, m, k;
S:= select(t -> subs(t, k) > n, [isolve(k^2+n=m*(n^2+k))]);
min(map(t -> subs(t, m), S))
end proc:
map(f, [$2..100]); # Robert Israel, Nov 18 2020
MATHEMATICA
Do[k = 1; While[m = (k^2 + n)/(n^2 + k); !IntegerQ[m] || m == 1, k++ ]; Print[m], {n, 2, 75} ]
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Benoit Cloitre, Dec 31 2001
EXTENSIONS
More terms from Robert G. Wilson v, Jan 03 2002
STATUS
approved