login
A066256
a(n) = k that produces the smallest integer m > 1 of the form m = (k^2 + n)/(n^2 + k).
3
5, 5, 10, 10, 26, 37, 12, 65, 30, 27, 38, 145, 109, 197, 226, 62, 290, 129, 108, 401, 442, 69, 56, 577, 130, 48, 730, 464, 105, 103, 300, 220, 1090, 363, 147, 222, 194, 1445, 184, 902, 1682, 387, 588, 390, 391, 263, 258, 133, 350, 2501, 2119, 1484, 549, 2917
OFFSET
2,1
COMMENTS
The function m(k) is a monotonically increasing function of k if n is held constant. Therefore the implementation may scan k upwards until the first integer m is found. - R. J. Mathar, Aug 07 2014
LINKS
MAPLE
A066256 := proc(n)
local k, f ;
for k from 1 do
f := (k^2+n)/(n^2+k) ;
if f > 1 and type(f, 'integer') then
return k;
end if;
end do:
end proc: # R. J. Mathar, Aug 07 2014
MATHEMATICA
Do[k = 1; While[m = (k^2 + n)/(n^2 + k); !IntegerQ[m] || m == 1, k++ ]; Print[k], {n, 2, 75} ]
CROSSREFS
Cf. A066257.
Sequence in context: A003882 A168284 A166598 * A029842 A112436 A309457
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 31 2001
EXTENSIONS
More terms from Robert G. Wilson v, Jan 03 2002
STATUS
approved