OFFSET
1,1
COMMENTS
It appears that there are more floor(n/N)-perfect numbers the larger N is. (Here N = 3.)
LINKS
J. Pe, On a Generalization of Perfect Numbers, J. Rec. Math., 31(3) (2002-2003), 168-172.
EXAMPLE
Let f(n) = floor(n/3). Then f(12) = 6 = 3+2+1+0 = f(6)+f(4)+f(3)+f(1); so 12 is a term of the sequence.
MATHEMATICA
f[x_] := Floor[x/3]; Select[ Range[2, 10^5], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Joseph L. Pe, Dec 19 2001
EXTENSIONS
a(14)-a(29) from Amiram Eldar, Sep 26 2019
STATUS
approved