

A066201


Array read by antidiagonals: for nth row (n>=0), T(n,0) = 1; for k > 0, T(n,k) = T(n,k1)(n+k1) if this is positive and has not already appeared in this row, otherwise T(n,k) = T(n,k1)+(n+k1).


5



1, 1, 1, 1, 2, 2, 1, 3, 4, 4, 1, 4, 6, 7, 7, 1, 5, 8, 2, 3, 3, 1, 6, 10, 3, 7, 8, 8, 1, 7, 12, 4, 9, 13, 14, 14, 1, 8, 14, 5, 11, 2, 20, 21, 21, 1, 9, 16, 6, 13, 3, 10, 12, 13, 13, 1, 10, 18, 7, 15, 4, 12, 19, 21, 22, 22, 1, 11, 20, 8, 17, 5, 14, 2, 29, 11, 12, 12, 1, 12, 22, 9, 19, 6, 16, 3, 13
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


LINKS

Table of n, a(n) for n=1..87.
Index entries for sequences related to Recamán's sequence


EXAMPLE

Array begins
1 1 2 4 7 3 8 ...
1 2 4 7 3 8 14 ...
1 3 6 2 7 13 20 ...
1 4 8 3 9 2 10 ...


MATHEMATICA

T[_, 0] = 1; T[n_, k_] := T[n, k] = If[t = T[n, k1]  (n+k1); t > 0 && FreeQ[Table[T[n, j], {j, 0, k1}], t], t, T[n, k1] + (n+k1)]; Table[ T[nk, k], {n, 0, 12}, {k, 0, n}] // Flatten (* JeanFrançois Alcover, Feb 18 2018 *)


CROSSREFS

Rows give A063733, A063733, A005132, A066199, A066200.
Sequence in context: A091594 A118032 A089692 * A303273 A193820 A216368
Adjacent sequences: A066198 A066199 A066200 * A066202 A066203 A066204


KEYWORD

nonn,easy,tabl


AUTHOR

N. J. A. Sloane, Dec 16 2001


EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 05 2003


STATUS

approved



