login
Permutation of the integers with cycle form {1}, {3, 2}, {6, 5, 4}, {10, 9, 8, 7}, ...
4

%I #32 Mar 23 2020 13:21:53

%S 1,3,2,6,4,5,10,7,8,9,15,11,12,13,14,21,16,17,18,19,20,28,22,23,24,25,

%T 26,27,36,29,30,31,32,33,34,35,45,37,38,39,40,41,42,43,44,55,46,47,48,

%U 49,50,51,52,53,54,66,56,57,58,59,60,61,62,63,64,65,78,67,68,69,70,71

%N Permutation of the integers with cycle form {1}, {3, 2}, {6, 5, 4}, {10, 9, 8, 7}, ...

%C Arrange natural numbers 1,2,3,4,5,... as a triangle like A000027, then rotate each row of triangle one step right. - _Antti Karttunen_, May 07 2002

%C As a rectangular array, a(n) is the natural interspersion of the sequence of triangular numbers; see A192872. [_Clark Kimberling_, Aug 12 2011]

%H Matthew House, <a href="/A066182/b066182.txt">Table of n, a(n) for n = 1..45150</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(n) = -1+n+binomial(A002024(n)+1,2)-binomial(A002024(n-1)+1,2) where A002024(n) is round(sqrt(2*n)). - _Brian Tenneson_, Feb 03 2017

%e Northwest corner, when sequence is formatted as the natural interspersion of the sequence (1,3,6,10,15,...) of triangular numbers:

%e 1...3...6...10...15

%e 2...4...7...11...16

%e 5...8...12..17...23

%e 9...13..18..24...31 [ _Clark Kimberling_, Aug 12 2011 ]

%t FromCycles[Table[n(n-1)/2+Range[n, 1, -1], {n, 13}]]

%Y Inverse permutation: A066181.

%Y Cf. A000027, A192872.

%K easy,nonn,tabl

%O 1,2

%A _Wouter Meeussen_, Dec 15 2001