login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A066170 Triangle read by rows: T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k), 0 <= k <= n, n >= 0. 28
1, -1, 1, 1, -1, -1, -1, 2, 1, -1, 1, -2, -3, 1, 1, -1, 3, 3, -4, -1, 1, 1, -3, -6, 4, 5, -1, -1, -1, 4, 6, -10, -5, 6, 1, -1, 1, -4, -10, 10, 15, -6, -7, 1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, 1, -5, -15, 20, 35, -21, -28, 8, 9, -1, -1, -1, 6, 15, -35, -35, 56, 28, -36, -9, 10, 1, -1, 1, -6, -21, 35, 70, -56, -84, 36, 45, -10, -11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

The original name of this sequence was: Triangle giving coefficients of characteristic function of n X n matrix in which the left upper half and the antidiagonal are filled with 1's and the right lower half is filled with 0's. As was pointed out by L. Edson Jeffery this is only correct if we multiply each triangle row by (-1)^n. For the straightforward version of the coefficients of the characteristic polynomials see A187660. - Johannes W. Meijer, Aug 08 2011

REFERENCES

Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001 (Chapter 14)

LINKS

Indranil Ghosh, Rows 0..125, flattened

Henry W. Gould, A Variant of Pascal's Triangle , The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271, with corrections.

P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.

FORMULA

From L. Edson Jeffery, Mar 23 2011: (Start)

  T(n,k) = (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2),k);

  T(n,k) = (-1)^n*A187660(n,k). (End)

From Johannes W. Meijer, Aug 08 2011: (Start)

  abs(T(n,k)) = A046854(n,k) = abs(A108299(n,n-k))

  abs(T(n,n-k)) = A065941(n,k). (End)

EXAMPLE

The table begins {1}; {-1, 1}; {1, -1, -1}; {-1, 2, 1, -1}; ...

The characteristic function of

( 1 1 1 )

( 1 1 0 )

( 1 0 0 )

is f(x) = x^3 - 2x^2 - x + 1, so the 3rd row is (-1)^3 times the f(x) coefficients, i.e., {-1; 2; 1; -1}.

MAPLE

A066170 := proc(n, k): (-1)^n*(-1)^(floor(3*k/2))*binomial(floor((n+k)/2), k) end: seq(seq(A066170(n, k), k=0..n), n=0..11); // Johannes W. Meijer, Aug 08 2011

MATHEMATICA

Flatten[Table[(-1)^n*(-1)^Floor[3*k/2]*Binomial[Floor[(n+k)/2], k], {n, 0, 12}, {k, 0, n}]] (* Indranil Ghosh, Feb 19 2017 *)

CROSSREFS

Cf. A007700, A059455, A065941. For another version see A030111.

Sequence in context: A267482 A130777 A187660 * A046854 A184957 A228349

Adjacent sequences:  A066167 A066168 A066169 * A066171 A066172 A066173

KEYWORD

sign,easy,tabl

AUTHOR

Floor van Lamoen, Dec 14 2001

EXTENSIONS

More terms from Vladeta Jovovic, Jan 02 2002

Corrected and edited by Johannes W. Meijer, Aug 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 05:08 EDT 2019. Contains 327995 sequences. (Running on oeis4.)