login
A066034
Second term in the continued fraction expansion of StieltjesGamma[n].
2
1, -13, -103, 486, 430, 1260, -4188, -1896, -2839, -29074, 4870, 3701, 5978, -36411, -4779, -3527, -5007, 38056, 3253, 1985, 2144, 9575, -1846, -803, -629, -930, 1522, 287, 156, 135, 281, -133, -38, -22, -19, -49, 13, 4, 2, 1, 4, -1, -1, -3, -5, -13, 1, 25, 1, 1, 1, -5, -5, -1, -2, -7, -3, 3, 2, 3, 3, 1, 1, -1
OFFSET
0,2
COMMENTS
StieltjesGamma[0] equals EulerGamma
EXAMPLE
The continued fraction expansions of the first four unsigned StieltjesGamma[n], n=0..3, are {0,1,1,2,1,2,1,4,3,13,5,1}, {0,13,1,2,1,2,1,74,1,10,1,9}, {0,103,5,8,3,9,1,8,10,1,10,1},{0,486,1,8,2,4,2,1,1,3,1,2}
MATHEMATICA
Part[ #, 2 ]&/@Table[ ContinuedFraction[ StieltjesGamma[ n ]~N~24, 12 ], {n, 0, 64} ]
CROSSREFS
KEYWORD
sign
AUTHOR
Wouter Meeussen, Dec 12 2001
STATUS
approved