%I #18 Dec 13 2019 05:19:42
%S 1,1,1,1,2,1,1,1,11,5,3,39,8,4,47
%N Number of inequivalent codes attaining highest minimal Hamming distance of any Type 4^Z self-dual code of length n over Z/4Z.
%C There are two versions of this sequence, this and A111259. I am not sure which is correct.
%H S. T. Dougherty, M. Harada and P. Solé, <a href="http://academic.uofs.edu/faculty/Doughertys1/publ.htm">Shadow Codes over Z_4</a>, Finite Fields Applic., 7 (2001), 507-529.
%H P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>
%H W. C. Huffman, <a href="https://doi.org/10.1016/j.ffa.2005.05.012">On the classification and enumeration of self-dual codes</a>, Finite Fields Applic., 11 (2005), 451-490.
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
%Y Cf. A066015 for minimal distance. See also A066012-A066016.
%K nonn,more
%O 1,5
%A _N. J. A. Sloane_, Dec 12 2001; revised May 06 2005