%I #12 Dec 13 2019 05:17:59
%S 4,4,4,4,4,4,4,4,4,4,4,8,4,8,8,8,8,8,8,8,8,8,12,12
%N Highest minimal Euclidean norm of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105682.
%H S. T. Dougherty, M. Harada and P. Solé, <a href="http://academic.uofs.edu/faculty/Doughertys1/publ.htm">Shadow Codes over Z_4</a>, Finite Fields Applic., 7 (2001), 507-529.
%H P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).
%Y Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.
%Y Cf. A066015 for number of codes. See also A066012-A066017.
%K nonn,more
%O 1,1
%A _N. J. A. Sloane_, Dec 12 2001; revised May 06 2005