login
Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.
8

%I #13 Dec 13 2019 05:17:45

%S 2,2,2,4,2,4,4,4,2,4,4,4,4,6,6,8,6,8,6,8,8,8,10,10

%N Highest minimal Lee distance of any Type 4^Z self-dual code of length n over Z/4Z which does not have all Euclidean norms divisible by 8, that is, is strictly Type I. Compare A105681.

%H S. T. Dougherty, M. Harada and P. Solé, <a href="http://academic.uofs.edu/faculty/Doughertys1/publ.htm">Shadow Codes over Z_4</a>, Finite Fields Applic., 7 (2001), 507-529.

%H P. Gaborit, <a href="http://www.unilim.fr/pages_perso/philippe.gaborit/SD/">Tables of Self-Dual Codes</a>

%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.

%H E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (<a href="http://neilsloane.com/doc/self.txt">Abstract</a>, <a href="http://neilsloane.com/doc/self.pdf">pdf</a>, <a href="http://neilsloane.com/doc/self.ps">ps</a>).

%Y Cf. A105674, A105675, A105676, A105677, A105678, A016729, A066016, A105681, A105682.

%Y Cf. A066013 for number of codes. See also A066014-A066017.

%K nonn,more

%O 1,1

%A _N. J. A. Sloane_, Dec 11 2001