OFFSET
1,1
COMMENTS
a(n) exists because n^3 + 1 divides (n^3 - n^2 + 1)^3 + 1. The set S of n such a(n) = n^3 - n^2 + 1 is S = (2, 3, 4, 7, 9, 15, 16, 19, 21, 22, ...).
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..300
MATHEMATICA
Do[k = 1; While[m = (k^3 + 1)/(n^3 + 1); m < 2 || !IntegerQ[m], k++ ]; Print[k], {n, 1, 50} ]
PROG
(PARI) { for (n=1, 300, a=n + 1; while (frac((a^3 + 1)/(n^3 + 1)), a++); write("b065964.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Dec 08 2001
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Dec 11 2001
STATUS
approved