The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065964 a(n) is the smallest k such that (k^3 + 1)/(n^3 + 1) is an integer > 1. 5
 3, 5, 19, 49, 17, 26, 295, 107, 649, 153, 323, 69, 145, 719, 3151, 3841, 251, 597, 6499, 362, 8821, 10165, 3527, 1399, 2981, 836, 1063, 21169, 7289, 3254, 607, 9899, 4045, 21304, 13067, 3431, 867, 803, 57799, 9183, 1601, 27527, 6159, 26459, 10993, 20538 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) exists because n^3 + 1 divides (n^3 - n^2 + 1)^3 + 1. The set S of n such a(n) = n^3 - n^2 + 1 is S = (2, 3, 4, 7, 9, 15, 16, 19, 21, 22, ...). LINKS Harry J. Smith, Table of n, a(n) for n = 1..300 MATHEMATICA Do[k = 1; While[m = (k^3 + 1)/(n^3 + 1); m < 2 || !IntegerQ[m], k++ ]; Print[k], {n, 1, 50} ] PROG (PARI) { for (n=1, 300, a=n + 1; while (frac((a^3 + 1)/(n^3 + 1)), a++); write("b065964.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009 CROSSREFS Cf. A065876. Sequence in context: A148543 A148544 A148545 * A209778 A148546 A148547 Adjacent sequences:  A065961 A065962 A065963 * A065965 A065966 A065967 KEYWORD nonn AUTHOR Benoit Cloitre, Dec 08 2001 EXTENSIONS Corrected and extended by Robert G. Wilson v, Dec 11 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 06:15 EDT 2020. Contains 336477 sequences. (Running on oeis4.)