login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065919 Bessel polynomial y_n(4). 6
1, 5, 61, 1225, 34361, 1238221, 54516085, 2836074641, 170218994545, 11577727703701, 880077524475821, 73938089783672665, 6803184337622361001, 680392371852019772765, 73489179344355757819621, 8525425196317119926848801, 1057226213522667226687070945 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Main diagonal of A143411. [Peter Bala, Aug 14 2008]

REFERENCES

W. Mlotkowski, A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408; http://www.math.uni.wroc.pl/~pms/files/33.2/Article/33.2.19.pdf

J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,100

Index entries for sequences related to Bessel functions or polynomials

FORMULA

y_n(x) = sum ((n+k)!*(x/2)^k/((n-k)!*k!), k=0..n);

Recurrence relation: a(0) = 1, a(1) = 5, a(n) = 4*(2*n-1)*a(n-1) + a(n-2) for n >= 2. Sequence A143412(n) satisfies the same recurrence relation. 1/sqrt(e) = 1 - 2*sum {n = 0..inf} (-1)^n/(a(n)*a(n+1)) = 1 - 2*(1/(1*5) - 1/(5*61) + 1/(61*1225) - ...). [Peter Bala, Aug 14 2008]

G.f.: 1/Q(0), where Q(k)= 1 - x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013

PROG

(PARI) { for (n=0, 100, if (n>1, a=4*(2*n - 1)*a1 + a2; a2=a1; a1=a, if (n, a=a1=5, a=a2=1)); write("b065919.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 04 2009

(PARI) a(n) = sum(k=0, n, (n+k)!*2^k/((n-k)!*k!) ); \\ Joerg Arndt, May 17 2013

CROSSREFS

Cf. A001515, A001517, A001518.

Polynomial coefficients are in A001498.

A143411 (main diagonal), A143412. [From Peter Bala, Aug 14 2008]

Sequence in context: A217820 A217821 A009825 * A196125 A096537 A115047

Adjacent sequences:  A065916 A065917 A065918 * A065920 A065921 A065922

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 08 2001

EXTENSIONS

Recurrence relation a(2) = 5 corrected to a(1) = 5 by Harry J. Smith, Nov 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 10:32 EST 2014. Contains 252241 sequences.