login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065874 a(n) = (7^(n+1) - (-6)^(n+1))/13. 2
1, 1, 43, 85, 1891, 5461, 84883, 314245, 3879331, 17077621, 180009523, 897269605, 8457669571, 46142992981, 401365114963, 2339370820165, 19196705648611, 117450280095541, 923711917337203, 5856623681349925, 44652524209512451 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A second order recurrence of promic type (integer roots).

If the number j = A002378(m) is promic ( = i(i+1)), then a(n) = a(n-1)+j*a(n-2),a(0) = a(1) = 1 has a closed form solution involving only powers of integers. The binomial coefficient sum solves the recurrence regardless of promicity (cf. GKP reference).

Hankel transform is := 1,42,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008

REFERENCES

R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, p. 204.

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..150

Index entries for linear recurrences with constant coefficients, signature (1,42).

FORMULA

a(n) = a(n-1) + 42a(n-2); a(0) = a(1) = 1.

G.f.: -1/((6*x+1)*(7*x-1)). - R. J. Mathar, Nov 16 2007

MAPLE

n->sum(binomial(n-k, k)*(42)^k, k=0..n)

MATHEMATICA

LinearRecurrence[{1, 42}, {1, 1}, 30] (* Harvey P. Dale, Apr 30 2017 *)

PROG

(PARI) { for (n=0, 150, if (n>1, a=a1 + 42*a2; a2=a1; a1=a, a=a1=a2=1); write("b065874.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009

CROSSREFS

Cf. A001045 (j=2), A015441 (j=6), A053404 (j=12), A053428 (j=20), A053430 (j=30).

Sequence in context: A180549 A247436 A063351 * A062060 A037986 A198593

Adjacent sequences:  A065871 A065872 A065873 * A065875 A065876 A065877

KEYWORD

nonn,easy

AUTHOR

Len Smiley, Dec 07 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 06:29 EST 2020. Contains 331317 sequences. (Running on oeis4.)