login
A065874
a(n) = (7^(n+1) - (-6)^(n+1))/13.
2
1, 1, 43, 85, 1891, 5461, 84883, 314245, 3879331, 17077621, 180009523, 897269605, 8457669571, 46142992981, 401365114963, 2339370820165, 19196705648611, 117450280095541, 923711917337203, 5856623681349925, 44652524209512451
OFFSET
0,3
COMMENTS
A second-order recurrence of promic type (integer roots).
If the number j = A002378(m) is promic (= i(i+1)), then a(n) = a(n-1) + j*a(n-2), a(0) = a(1) = 1 has a closed-form solution involving only powers of integers. The binomial coefficient sum solves the recurrence regardless of promicity (cf. GKP reference).
Hankel transform is := 1,42,0,0,0,0,0,0,0,0,0,0,... - Philippe Deléham, Nov 02 2008
REFERENCES
R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, p. 204.
FORMULA
a(n) = a(n-1) + 42a(n-2); a(0) = a(1) = 1.
G.f.: -1/((6*x+1)*(7*x-1)). - R. J. Mathar, Nov 16 2007
MAPLE
n->sum(binomial(n-k, k)*(42)^k, k=0..n)
MATHEMATICA
LinearRecurrence[{1, 42}, {1, 1}, 30] (* Harvey P. Dale, Apr 30 2017 *)
PROG
(PARI) { for (n=0, 150, if (n>1, a=a1 + 42*a2; a2=a1; a1=a, a=a1=a2=1); write("b065874.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 02 2009
CROSSREFS
Cf. A001045 (j=2), A015441 (j=6), A053404 (j=12), A053428 (j=20), A053430 (j=30).
Sequence in context: A180549 A247436 A063351 * A062060 A037986 A350141
KEYWORD
nonn,easy
AUTHOR
Len Smiley, Dec 07 2001
STATUS
approved