login
Smallest prime q such that (p^q-1)/(p-1) is a prime, where p = prime(n).
6

%I #8 Jan 18 2017 20:20:11

%S 2,3,3,5,17,5,3,19,5,5,7,13,3,5,127,11,3,7,19,3,5,5,5,3,17,3,19,17,17,

%T 23,5,3,11,163,7,13,17,7,3,3,19,17,17,5,31,577,41,239,5,11,113,5,17,7,

%U 23,5

%N Smallest prime q such that (p^q-1)/(p-1) is a prime, where p = prime(n).

%C a(n) = 2*A065813(n) + 1, n > 1.

%H Andy Steward, <a href="http://www.users.globalnet.co.uk/~aads/titans.html">Titanic Prime Generalized Repunits</a>

%t Do[p = Prime[n]; k = 1; While[ !PrimeQ[ (p^Prime[k] - 1)/(p - 1)], k++ ]; Print[ Prime[k]], {n, 1, 56} ]

%o (PARI) { allocatemem(932245000); for (n=1, 100, p=prime(n); q=2; while (!isprime((p^q - 1)/(p - 1)), q=nextprime(q + 1)); write("b065854.txt", n, " ", q) ) } \\ _Harry J. Smith_, Nov 01 2009

%Y Cf. A084740 (least k such that (n^k-1)/(n-1) is prime).

%K hard,nonn

%O 1,1

%A _Vladeta Jovovic_, Nov 26 2001