login
a(n) is the smallest integer k such that floor((3/2)^k)/floor((3/2)^n) is an integer greater than 1.
0

%I #15 Jun 18 2018 03:15:07

%S 2,9,10,8,18,27,26,20,24,25,43,44,229,230,2242,162,3776,2123,2697,

%T 11517,207,1824,35102,6767,6768,50320,51815,1438,50419,50420,51954,

%U 51955

%N a(n) is the smallest integer k such that floor((3/2)^k)/floor((3/2)^n) is an integer greater than 1.

%e a(2) = 9 because floor((3/2)^9)/floor((3/2)^2) = 19 is the smallest integer value > 1 of the form floor((3/2)^k)/floor((3/2)^2).

%t Array[Block[{k = 2}, While[Nand[# > 1, IntegerQ@ #] &[Floor[(3/2)^k]/Floor[(3/2)^#]], k++]; k] &, 32] (* _Michael De Vlieger_, Jun 14 2018 *)

%o (PARI) { for (n=1, 100, p=0; while ((a=floor((3/2)^p)/floor((3/2)^n)) < 2 || frac(a) > 0, p++); write("b065644.txt", n, " ", p) ) } \\ _Harry J. Smith_, Oct 25 2009

%Y Cf. A002379.

%K nonn

%O 1,1

%A _Benoit Cloitre_, Dec 03 2001

%E Edited by _Harry J. Smith_, Oct 25 2009

%E 10 more terms from _Harry J. Smith_, Oct 25 2009

%E Edited by _Jon E. Schoenfield_, Jun 14 2018