login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065602 Triangle T(n,k) giving number of hill-free Dyck paths of length 2n and having height of first peak equal to k. 4
1, 1, 1, 3, 2, 1, 8, 6, 3, 1, 24, 18, 10, 4, 1, 75, 57, 33, 15, 5, 1, 243, 186, 111, 54, 21, 6, 1, 808, 622, 379, 193, 82, 28, 7, 1, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1, 33062, 25724, 16266, 8928, 4332, 1856, 692, 218, 55, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
2,4
COMMENTS
A Riordan triangle.
Subtriangle of triangle in A167772. - Philippe Deléham, Nov 14 2009
Riordan array (f(x), x*g(x)) where f(x) is the g.f. of A000958 and g(x) is the g.f. of A000108. - Philippe Deléham, Jan 23 2010
LINKS
Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
T(n, 2) = A000958(n-1).
Sum_{k=2..n} T(n, k) = A000957(n+1).
From Emeric Deutsch, Feb 23 2004: (Start)
T(n, k) = Sum_{j=0..floor((n-k)/2)} (k-1+2*j)*binomial(2*n-k-1-2*j, n-1)/(2*n-k-1-2*j).
G.f.: t^2*z^2*C/( (1-z^2*C^2)*(1-t*z*C) ), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
T(n,k) = A167772(n-1,k-1), k=2..n. - Reinhard Zumkeller, May 15 2014
From G. C. Greubel, May 26 2022: (Start)
T(n, n-1) = A000027(n-2).
T(n, n-2) = A000217(n-2).
T(n, n-3) = A166830(n-3). (End)
EXAMPLE
T(3,2)=1 reflecting the unique Dyck path (UUDUDD) of length 6, with no hills and height of first peak equal to 2.
Triangle begins:
1;
1, 1;
3, 2, 1;
8, 6, 3, 1;
24, 18, 10, 4, 1;
75, 57, 33, 15, 5, 1;
243, 186, 111, 54, 21, 6, 1;
808, 622, 379, 193, 82, 28, 7, 1;
2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
MAPLE
a := proc(n, k) if n=0 and k=0 then 1 elif k<2 or k>n then 0 else sum((k-1+2*j)*binomial(2*n-k-1-2*j, n-1)/(2*n-k-1-2*j), j=0..floor((n-k)/2)) fi end: seq(seq(a(n, k), k=2..n), n=1..14);
MATHEMATICA
nmax = 12; t[n_, k_] := Sum[(k-1+2j)*Binomial[2n-k-1-2j, n-1] / (2n-k-1-2j), {j, 0, (n-k)/2}]; Flatten[ Table[t[n, k], {n, 2, nmax}, {k, 2, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
PROG
(Haskell)
a065602 n k = sum
[(k-1+2*j) * a007318' (2*n-k-1-2*j) (n-1) `div` (2*n-k-1-2*j) |
j <- [0 .. div (n-k) 2]]
a065602_row n = map (a065602 n) [2..n]
a065602_tabl = map a065602_row [2..]
-- Reinhard Zumkeller, May 15 2014
(SageMath)
def T(n, k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) )
flatten([[T(n, k) for k in (2..n)] for n in (2..12)]) # G. C. Greubel, May 26 2022
CROSSREFS
Row sums give A000957 (the Fine sequence).
First column is A000958.
Sequence in context: A193924 A110439 A327917 * A237596 A292898 A198498
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Dec 02 2001
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 06:14 EDT 2024. Contains 371964 sequences. (Running on oeis4.)