login
A065492
Exponents in expansion of constant A065480 as a product zeta(n)^(-a(n)).
1
0, 1, -1, 2, -4, 8, -14, 25, -48, 92, -168, 310, -590, 1117, -2092, 3945, -7500, 14264, -27102, 51627, -98694, 188934, -361936, 694565, -1335466, 2570965, -4954744, 9561045, -18473140, 35730392, -69176558, 134063535, -260062168, 504918960
OFFSET
0,4
COMMENTS
Inverse Euler transform of A077925 shifted by two places: 1, 0, 1, -1, 3, -5,... [From R. J. Mathar, Jul 26 2010]
FORMULA
a(n) ~ -(-1)^n * 2^(n+1) / n. - Vaclav Kotesovec, Jun 13 2020
MATHEMATICA
nmax = 40; s = {}; For[j = 1, j <= nmax, j++, AppendTo[s, j*(1 - (-2)^(j - 1))/3 - Sum[s[[d]]*(1 - (-2)^(j - d - 1))/3, {d, j - 1}]]]; Table[Sum[If[Divisible[j, d], MoebiusMu[j/d], 0]*s[[d]], {d, 1, j}]/j, {j, nmax}] (* Vaclav Kotesovec, Jun 13 2020 *)
CROSSREFS
Cf. A065480.
Sequence in context: A164150 A164149 A164148 * A298880 A208483 A284735
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 19 2001
EXTENSIONS
More terms from R. J. Mathar, Jul 26 2010
STATUS
approved