OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 106.
LINKS
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 155.
Yilan Hu and Carl Pomerance, The average order of elements in the multiplicative group of a finite field, involve, Vol. 5 (2012), No. 2, 229-236. See p. 8.
Sungjin Kim, Average results on the order of a modulo p, Journal of Number Theory, Vol. 169 (2016), pp. 353-368; arXiv preprint, arXiv:1509.01752 [math.NT], 2015.
Pär Kurlberg and Carl Pomerance, On a problem of Arnold: the average multiplicative order of a given integer, Algebra and Number Theory, Vol. 7, No. 4 (2013), pp. 981-999; alternative link.
Pieter Moree and Peter Stevenhagen, A two-variable Artin conjecture, Journal of Number Theory, Vol. 85, No. 2 (2000), pp. 291-304; arXiv preprint, arXiv:math/9912250 [math.NT], 1999.
G. Niklasch, Some number theoretical constants: 1000-digit values. [Cached copy]
P. J. Stephens, An average result for Artin's conjecture, Mathematika, Vol. 16, No. 2 (1969), pp. 178-188.
P. J. Stephens, Prime divisors of second-order linear recurrences. I,, Journal of Number Theory, Vol. 8, No. 3 (1976), pp. 313-332.
Eric Weisstein's World of Mathematics, Stephens' Constant.
Wikipedia, Stephens' constant.
EXAMPLE
0.57595996889294543964316337549249669...
MATHEMATICA
$MaxExtraPrecision = 100; m0 = 200; dm = 200; digits = 101; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - p/(p^3 - 1)], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits+10]&); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits+5] != RealDigits[f[m - dm], 10, digits+5], m = m + dm]; RealDigits[f[m], 10, digits] // First (* Jean-François Alcover, Sep 15 2015 *)
PROG
(PARI) prodeulerrat(1 - p/(p^3-1)) \\ Amiram Eldar, Mar 17 2021
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
N. J. A. Sloane, Nov 19 2001
STATUS
approved