The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065473 Decimal expansion of the strongly carefree constant: product(1 - (3*p-2)/(p^3)), p prime >= 2). 19
 2, 8, 6, 7, 4, 7, 4, 2, 8, 4, 3, 4, 4, 7, 8, 7, 3, 4, 1, 0, 7, 8, 9, 2, 7, 1, 2, 7, 8, 9, 8, 3, 8, 4, 4, 6, 4, 3, 4, 3, 3, 1, 8, 4, 4, 0, 9, 7, 0, 5, 6, 9, 9, 5, 6, 4, 1, 4, 7, 7, 8, 5, 9, 3, 3, 6, 6, 5, 2, 2, 4, 3, 1, 3, 1, 9, 4, 3, 2, 5, 8, 2, 4, 8, 9, 1, 2, 6, 8, 2, 5, 5, 3, 7, 4, 2, 3, 7, 4, 6, 8, 5, 3, 6, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Also decimal expansion of the probability that an integer triple (x, y, z) is pairwise coprime. - Charles R Greathouse IV, Nov 14 2011 The probability that 2 numbers chosen at random are coprime, and both squarefree (Delange, 1969). - Amiram Eldar, Aug 04 2020 REFERENCES Gerald Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd edition, American Mathematical Society, 2015, page 59, exercise 55 and 56. LINKS J. Arias de Reyna, R. Heyman, Counting Tuples Restricted by Pairwise Coprimality Conditions, J. Int. Seq. 18 (2015) 15.10.4 T. D. Browning, The divisor problem for binary cubic forms, arXiv:1006.3476 [math.NT], 2010. Hubert Delange, On some sets of pairs of positive integers, Journal of Number Theory, Vol. 1, No. 3 (1969), pp. 261-279. See p. 277. G. Niklasch, Some number theoretical constants: 1000-digit values G. Niklasch, Some number theoretical constants: 1000-digit values [cached copy] László Tóth, The probability that k positive integers are pairwise relatively prime, Fibonacci Quart., 40 (2002), 13-18. László Tóth, Another generalization of Euler's arithmetic function and of Menon's identity, arXiv:2006.12438 [math.NT], 2020. See p. 3. Eric Weisstein's World of Mathematics, Carefree Couple FORMULA Equals Prod_{p prime} (1 - 1/p)^2*(1 + 2/p). - Michel Marcus, Apr 16 2016 The constant c in Sum_{k<=x} mu(k)^2 * 2^omega(k) = c * x * log(x) + O(x), where mu is A008683 and omega is A001221, and in Sum_{k<=x} 3^omega(k) = (1/2) * c * x * log(x)^2 + O(x*log(x)) (see Tenenbaum, 2015). - Amiram Eldar, May 24 2020 Equals A065472 * A227929 =  A065472 / A098198. - Amiram Eldar, Aug 04 2020 EXAMPLE 0.2867474284344787341078927127898384... MATHEMATICA digits = 100; NSum[-(2+(-2)^n)*PrimeZetaP[n]/n, {n, 2, Infinity}, NSumTerms -> 2 digits, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"] // Exp // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 11 2016 *) PROG (PARI) prodeuler(p=2, 1e7, t=1-1./p; t^2*(t+3/p)) \\ Charles R Greathouse IV, Nov 14 2011 CROSSREFS Cf. A065472, A069201, A069212, A074816, A074823, A078073, A098198, A227929, A299822. Sequence in context: A021890 A199504 A019914 * A054029 A197589 A124356 Adjacent sequences:  A065470 A065471 A065472 * A065474 A065475 A065476 KEYWORD cons,nonn AUTHOR N. J. A. Sloane, Nov 19 2001 EXTENSIONS Name corrected by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 03 2003 More digits from Vaclav Kotesovec, Dec 19 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 22:24 EDT 2020. Contains 337291 sequences. (Running on oeis4.)