|
|
A065463
|
|
Decimal expansion of Product_{p prime} (1 - 1/(p*(p+1))).
|
|
22
|
|
|
7, 0, 4, 4, 4, 2, 2, 0, 0, 9, 9, 9, 1, 6, 5, 5, 9, 2, 7, 3, 6, 6, 0, 3, 3, 5, 0, 3, 2, 6, 6, 3, 7, 2, 1, 0, 1, 8, 8, 5, 8, 6, 4, 3, 1, 4, 1, 7, 0, 9, 8, 0, 4, 9, 4, 1, 4, 2, 2, 6, 8, 4, 2, 5, 9, 1, 0, 9, 7, 0, 5, 6, 6, 8, 2, 0, 0, 6, 7, 7, 8, 5, 3, 6, 8, 0, 8, 2, 4, 4, 1, 4, 5, 6, 9, 3, 1, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The density of A268335. - Vladimir Shevelev, Feb 01 2016
The probability that two numbers are coprime given that one of them is coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019
|
|
LINKS
|
Table of n, a(n) for n=0..97.
O. Bordelles, B. Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq. 16 (2013) #13.6.3.
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.
D. Handelman, Invariants for critical dimension groups and permutation-Hermite equivalence, arXiv preprint arXiv:1309.7417 [math.AC], 2013.
R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arxiv:0903.2514 [math.NT] (2009) constant Q_1^(1).
G. Niklasch, Some number theoretical constants: 1000-digit values
G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.
R. Sitaramachandrarao and D. Suryanarayana, On Sigma_{n<=x} sigma*(n) and Sigma_{n<=x} phi*(n), Proceedings of the American Mathematical Society, Vol. 41, No. 1 (1973), pp. 61-66.
Laszlo Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1,arXiv preprint, arXiv:1608.00795 [math.NT], 2016.
D. Zhang, W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7, eq (4).
Rimer Zurita Generalized Alternating Sums of Multiplicative Arithmetic Functions, J. Int. Seq., Vol. 23 (2020), Article 20.10.4.
|
|
FORMULA
|
From Amiram Eldar, Mar 05 2019: (Start)
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} rad(k), where rad(k) = A007947(k) is the squarefree kernel of k (Cohen).
Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} uphi(k), where uphi(k) = A047994(k) is the unitary totient function (Sitaramachandrarao and Suryanarayana).
Equals lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/psi(k), where psi(k) = A001615(k) is the Dedekind psi function (Sita Ramaiah and Suryanarayana).
(End)
Equals A065473*A013661/A065480. - Luke Palmer, Apr 27 2019
|
|
EXAMPLE
|
0.7044422009991655927366033503...
|
|
MATHEMATICA
|
$MaxExtraPrecision = 1200; digits = 98; terms = 1200; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
|
|
CROSSREFS
|
Cf. A001615, A007947, A047994, A078082, A268335, A306633.
Cf. A065473, A065480, A065490.
Sequence in context: A021146 A201424 A070513 * A319739 A242780 A324997
Adjacent sequences: A065460 A065461 A065462 * A065464 A065465 A065466
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
N. J. A. Sloane, Nov 19 2001
|
|
STATUS
|
approved
|
|
|
|