login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065463 Decimal expansion of Product_{p prime} (1 - 1/(p*(p+1))). 9
7, 0, 4, 4, 4, 2, 2, 0, 0, 9, 9, 9, 1, 6, 5, 5, 9, 2, 7, 3, 6, 6, 0, 3, 3, 5, 0, 3, 2, 6, 6, 3, 7, 2, 1, 0, 1, 8, 8, 5, 8, 6, 4, 3, 1, 4, 1, 7, 0, 9, 8, 0, 4, 9, 4, 1, 4, 2, 2, 6, 8, 4, 2, 5, 9, 1, 0, 9, 7, 0, 5, 6, 6, 8, 2, 0, 0, 6, 7, 7, 8, 5, 3, 6, 8, 0, 8, 2, 4, 4, 1, 4, 5, 6, 9, 3, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The density of A268335. - Vladimir Shevelev, Feb 01 2016

LINKS

Table of n, a(n) for n=0..97.

O. Bordelles, B. Cloitre, An Alternating Sum Involving the Reciprocal of Certain Multiplicative Functions, J. Int. Seq. 16 (2013) #13.6.3.

Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.

D. Handelman, Invariants for critical dimension groups and permutation-Hermite equivalence, arXiv preprint arXiv:1309.7417 [math.AC], 2013.

R. J. Mathar, Hardy-Littlewood constants embedded into infinite products over all positive integers, arxiv:0903.2514 [math.NT] (2009) constant Q_1^(1).

G. Niklasch, Some number theoretical constants: 1000-digit values

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.

R. Sitaramachandrarao and D. Suryanarayana, On Sigma_{n<=x} sigma*(n) and Sigma_{n<=x} phi*(n), Proceedings of the American Mathematical Society, Vol. 41, No. 1 (1973), pp. 61-66.

Laszlo Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1,arXiv preprint, arXiv:1608.00795 [math.NT], 2016.

D. Zhang, W. Zhai, Mean Values of a Gcd-Sum Function Over Regular Integers Modulo n, J. Int. Seq. 13 (2010), 10.4.7, eq (4).

FORMULA

From Amiram Eldar, Mar 05 2019: (Start)

Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} rad(k), where rad(k) = A007947(k) is the squarefree kernel of k (Cohen).

Equals lim_{m->oo} (2/m^2)*Sum_{k=1..m} uphi(k), where uphi(k) = A047994(k) is the unitary totient function (Sitaramachandrarao and Suryanarayana).

Equals lim_{m->oo} (1/log(m))*Sum_{k=1..m} 1/psi(k), where psi(k) = A001615(k) is the Dedekind psi function (Sita Ramaiah and Suryanarayana).

(End)

EXAMPLE

0.7044422009991655927366033503...

MATHEMATICA

$MaxExtraPrecision = 1200; digits = 98; terms = 1200; P[n_] := PrimeZetaP[n]; LR = Join[{0, 0}, LinearRecurrence[{-2, 0, 1}, {-2, 3, -6}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)

CROSSREFS

Cf. A001615, A007947, A047994, A065490, A078082, A268335.

Sequence in context: A021146 A201424 A070513 * A319739 A242780 A011392

Adjacent sequences:  A065460 A065461 A065462 * A065464 A065465 A065466

KEYWORD

cons,nonn,changed

AUTHOR

N. J. A. Sloane, Nov 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 21 22:19 EDT 2019. Contains 321382 sequences. (Running on oeis4.)