login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inequivalent (ordered) solutions to a^2 + b^2 + c^2 + d^2 = n^2.
4

%I #14 Feb 17 2015 08:25:43

%S 1,1,2,2,2,3,4,4,2,6,7,6,4,8,10,14,2,11,14,13,7,23,15,17,4,24,21,31,

%T 10,25,37,28,2,46,29,49,14,38,35,61,7,45,62,49,15,93,47,57,4,72,67,97,

%U 21,71,84,101,10,119,70,86,37,92,79,165,2,138,127,109,29,168,140,121,14

%N Number of inequivalent (ordered) solutions to a^2 + b^2 + c^2 + d^2 = n^2.

%H Alois P. Heinz, <a href="/A065458/b065458.txt">Table of n, a(n) for n = 0..1000</a>

%e a(5)=3 because 25 produces {0,0,0,5}, {0,0,3,4}, {1,2,2,4}.

%p N:= 100:

%p R:= Vector(N,1):

%p for a from 0 to N do

%p for b from a to floor(sqrt(N^2-a^2)) do

%p for c from b to floor(sqrt(N^2-a^2-b^2)) do

%p q:= a^2 + b^2 + c^2;

%p for f in numtheory:-divisors(q) do

%p if f^2 + 2*f*c <= q and (f + q/f)::even then

%p r:= (f + q/f)/2;

%p if r <= N then R[r]:= R[r]+1 fi;

%p fi

%p od od od od:

%p convert(R,list); # _Robert Israel_, Feb 16 2015

%t Length/@Table[SumOfSquaresRepresentations[4, (k)^2], {k, 72}]

%Y Cf. A063014, A016727, A065459.

%Y Column k=4 of A255212.

%K nonn

%O 0,3

%A _Wouter Meeussen_, Nov 18 2001

%E a(0)=1 prepended by _Alois P. Heinz_, Feb 17 2015