The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065363 Sum of balanced ternary digits in n. Replace 3^k with 1 in balanced ternary expansion of n. 17
 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, -3, -2, -1, -2, -1, 0, -1, 0, 1, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, -2, -1, 0, -1, 0, 1, 0, 1, 2, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2, 3, 2, 3, 4, -1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Notation: (3)(1). Extension to negative n: a(-n) = -a(n). - Franklin T. Adams-Watters, May 13 2009 Row sums of A059095. - Rémy Sigrist, Oct 05 2019 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 F. T. Adams-Watters and F. Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS 12 (2009) 09.5.6. Daniel Forgues, Table of n, a(n) for n = 0..100000 FORMULA G.f.: (1/(1-x))*Sum_{k>=0} (x^3^k - x^(2*3^k))/(x^((3^k-1)/2)*(1 + x^3^k + x^(2*3^k))). - Franklin T. Adams-Watters, May 13 2009 a(n) = A134024(n) - A134022(n). - Reinhard Zumkeller, Dec 16 2010 a(3*n - 1) = a(n) - 1, a(3*n) = a(n), a(3*n + 1) = a(n) + 1. - Thomas König, Jun 24 2020 EXAMPLE 5 = + 1(9) - 1(3) - 1(1) -> +1 - 1 - 1 = -1 = a(5). MAPLE a:= proc(n) `if`(n=0, 0, (d-> `if`(d=2,       a(q+1)-1, d+a(q)))(irem(n, 3, 'q')))     end: seq(a(n), n=0..120);  # Alois P. Heinz, Jan 09 2020 MATHEMATICA balTernDigits[0] := {0}; balTernDigits[n_/; n > 0] := Module[{unParsed = n, currRem, currExp = 1, digitList = {}, nextDigit}, While[unParsed > 0, If[unParsed == 3^(currExp - 1), digitList = Append[digitList, 1]; unParsed = 0, currRem = Mod[unParsed, 3^currExp]/3^(currExp - 1); nextDigit = Switch[currRem, 0, 0, 2, -1, 1, 1]; digitList = Append[digitList, nextDigit]; unParsed = unParsed - nextDigit * 3^(currExp - 1)]; currExp++]; digitList = Reverse[digitList]; Return[digitList]]; balTernDigits[n_/; n < 0] := (-1)balTernDigits[Abs[n]]; Table[Plus@@balTernDigits[n], {n, 0, 108}] (* Alonso del Arte, Feb 25 2011 *) terVal[lst_List] := Reverse[lst].(3^Range[0, Length[lst] - 1]); maxDig = 4; t = Table[0, {3 * 3^maxDig/2}]; t[[1]] = 1; Do[d = IntegerDigits[Range[0, 3^dig - 1], 3, dig]/.{2 -> -1}; d = Prepend[#, 1]&/@d; t[[terVal/@d]] = Total/@d, {dig, maxDig}]; Prepend[t, 0] (* T. D. Noe, Feb 24 2011 *) Array[Total[Prepend[IntegerDigits[#, 3], 0] //. {a___, b_, 2, c___} :> {a, b + 1, -1, c}] &, 109, 0] (* Michael De Vlieger, Jun 27 2020 *) PROG (Python) def a(n):     s=0     x=0     while n>0:         x=n%3         n=n/3         if x==2:             x=-1             n+=1         s+=x     return s print [a(n) for n in range(101)] # Indranil Ghosh, Jun 06 2017 (PARI) bt(n)=my(d=digits(n, 3), c=1); while(c, if(d[1]==2, d=concat(0, d)); c=0; for(i=2, #d, if(d[i]==2, d[i]=-1; d[i-1]+=1; c=1))); d a(n)=vecsum(bt(n)) \\ Charles R Greathouse IV, May 07 2020 CROSSREFS Cf. A059095, A065364, A053735. See A134452 for iterations. Cf. A134022, A134024. Sequence in context: A098381 A318463 A030372 * A119995 A062756 A334107 Adjacent sequences:  A065360 A065361 A065362 * A065364 A065365 A065366 KEYWORD base,easy,sign,look AUTHOR Marc LeBrun, Oct 31 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 16:18 EST 2020. Contains 338640 sequences. (Running on oeis4.)