login
Mersenne composites: 2^prime(m) - 1 is not a prime.
20

%I #42 Jul 24 2021 06:55:33

%S 2047,8388607,536870911,137438953471,2199023255551,8796093022207,

%T 140737488355327,9007199254740991,576460752303423487,

%U 147573952589676412927,2361183241434822606847,9444732965739290427391

%N Mersenne composites: 2^prime(m) - 1 is not a prime.

%C For the number of prime factors in a(n) see A135975. For indices of primes n in composite 2^prime(n)-1 see A135980. For smallest prime divisors of Mersenne composites see A136030. For largest prime divisors of Mersenne composites see A136031. For largest divisors see A145097. - _Artur Jasinski_, Oct 01 2008

%C All the terms are Fermat pseudoprimes to base 2 (A001567). For a proof see, e.g., Jaroma and Reddy (2007). - _Amiram Eldar_, Jul 24 2021

%H Muniru A Asiru, <a href="/A065341/b065341.txt">Table of n, a(n) for n = 1..110</a>

%H John H. Jaroma and Kamaliya N. Reddy, <a href="https://www.jstor.org/stable/27642303">Classical and alternative approaches to the Mersenne and Fermat numbers</a>, The American Mathematical Monthly, Vol. 114, No. 8 (2007), pp. 677-687.

%F a(n) = 2^A054723(n) - 1.

%e 2^11 - 1 = 2047 = 23*89.

%p A065341 := proc(n) local i;

%p i := 2^(ithprime(n))-1:

%p if (not isprime(i)) then

%p RETURN (i)

%p fi: end: seq(A065341(n), n=1..21); # _Jani Melik_, Feb 09 2011

%t Select[Table[2^Prime[n]-1,{n,30}],!PrimeQ[#]&] (* _Harvey P. Dale_, May 06 2018 *)

%Y Cf. A054723, A000043, A000668, A001348, A001567.

%Y Cf. A135975, A135980, A145097, A136031. - _Artur Jasinski_, Oct 01 2008

%K nonn

%O 1,1

%A _Labos Elemer_, Oct 30 2001