login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065259 A057114 conjugated with A059893, inverse of A065260. 3
3, 1, 7, 2, 11, 5, 15, 4, 19, 9, 23, 6, 27, 13, 31, 8, 35, 17, 39, 10, 43, 21, 47, 12, 51, 25, 55, 14, 59, 29, 63, 16, 67, 33, 71, 18, 75, 37, 79, 20, 83, 41, 87, 22, 91, 45, 95, 24, 99, 49, 103, 26, 107, 53, 111, 28, 115, 57, 119, 30, 123, 61, 127, 32, 131, 65, 135, 34, 139 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

Index entries for sequences that are permutations of the natural numbers

Index entries for linear recurrences with constant coefficients, signature (0,0,0,2,0,0,0,-1).

FORMULA

a(n) = A059893(A057114(A059893(n))).

a(2*k+1) = 4*k+3, a(4*k+2) = 4*k+1, a(4*k+4) = 2*k+2. - Ralf Stephan, Jun 10 2005

a(n) = (11*n+2-(5*n+6)*(-1)^n+(n-2)*(1+(-1)^n)*(-1)^((2*n-3-(-1)^n)/4))/8. - Luce ETIENNE, Oct 29 2016

From Colin Barker, Oct 29 2016: (Start)

a(n) = 2*a(n-4) - a(n-8) for n>8.

G.f.: x*(3 + x + 7*x^2 + 2*x^3 + 5*x^4 + 3*x^5 + x^6)/((1 - x)^2*(1 + x)^2*(1 + x^2)^2). (End)

EXAMPLE

G.f. = 3*x + x^2 + 7*x^3 + 2*x^4 + 11*x^5 + 5*x^6 + 15*x^7 + 4*x^8 + ...

PROG

(PARI) Vec(x*(3+x+7*x^2+2*x^3+5*x^4+3*x^5+x^6)/((1-x)^2*(1+x)^2*(1+x^2)^2) + O(x^100)) \\ Colin Barker, Oct 29 2016

(PARI) {a(n) = if( n%2, 2*n+1, n%4, n-1, n/2)}; /* Michael Somos, Nov 06 2016 */

CROSSREFS

Sequence in context: A065263 A057114 A235800 * A065289 A065265 A235263

Adjacent sequences:  A065256 A065257 A065258 * A065260 A065261 A065262

KEYWORD

nonn,easy

AUTHOR

Antti Karttunen, Oct 28 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 20:23 EST 2019. Contains 319310 sequences. (Running on oeis4.)