
A NOTE ON STEPHAN’S CONJECTURE 77

CHRIS BURNS AND BENJAMIN PURCELL

Recently Stephan [2] posted 117 conjectures based on extensive analysis of the
On-line Encyclopedia of Integer Sequences [1]. Here we give a proof of conjecture
77.

Conjecture 77 is concerned with what is called the same game. The moves of
this game are performed on binary strings. Specifically, let S be a binary n-string
with a run of k > 1 consecutive identical digits. Then we define a reduction rule
by removing those consecutive identical digits thus producing an (n − k)-string.
Strings that can be reduced to null by a sequence of reduction rules in the same
game are called winning strings. Losing strings are those strings that are not
winning strings.

Conjecture 77 states that the number of winning strings of length n is 2n −
2nFn−2 − (−1)n − 1 where Fn is the n’th Fibonacci number. There are a total of
2n binary strings of length n. Therefore, the conjecture says that the number of
losing strings of length n is 2nFn−2 (n odd) or 2nFn−2 +2 (n even). For n even, we
call the two losing strings which repeat ‘10’ n/2 times or ‘01’ n/2 times the trivial
losing strings.

The overall structure of our proof is to find Fn−2 non-trivial losing strings, each of
which represents 2n different non-trivial losing strings. We will do this by defining
a group action on binary strings in order to show that the orbit of a losing string
under this action is 2n. We then find Fn−2 distinct orbits.

Consider the group G = Z/2Z ⊕ Z/nZ (written multiplicatively). Let r be a
generator of Z/nZ and c a generator of Z/2Z. Let Qn be the set of binary n-strings.
Then we define an action of G on Qn by mapping r to rotation of strings

a1a2 . . . an 7→ a2a3 . . . ana1

and mapping c to complementation of strings. Here complementation produces the
string where each element ai is mapped to 0 if ai = 1 and 1 if ai = 0.

Proposition 1. Every G-orbit of Qn consists entirely of winning strings or entirely
of losing strings.

Proof. Assume S is a winning string of length n that begins with 0. Then there is
some sequence of removals that reduces S to null, one of which removes the first
0 in S along with at least one other 0. Notice that removing this 0 cannot bring
together a run of consecutive identical digits. Therefore, we can choose to save
this run of 0’s for the end, making its removal the final removal. Similarly, we can
choose to save any 0’s at the end of the string for our final removal.

Now consider rS. This string resembles S, except that the 0 at the beginning
is now on the end. Notice that we can perform moves on rS analogous to those
performed on S above except for the last move that takes S to null. This is because
we “protect” any 0’s on the ends of S. If we follow the same sequence of removals
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as before, we will be left with a single run of 0’s so that rS is also a winning string.
This argument can be repeated for S beginning with 1.

It is obvious that cS must also be a winning string. Thus we have that, given
a winning string S, cS and rS are winning, proving that any orbit containing a
winning string contains only winning strings (c and r generate G). This implies
that any orbit containing a losing string contains only losing strings. �

Thus we have losing orbits and winning orbits. Moreover, Proposition 1 gives
a useful corollary. Consider a variant of the same game we call the wraparound
game. In this variant all reduction rules in the same game are valid and we also
allow removal of runs of consecutive identical digits that wrap around the end of
the string. Thus

0010 7→ 1

is a reduction rule in the wraparound game.

Corollary 2. S is a winning string in the same game if and only if S is a winning
string in the wraparound game.

Proof. We prove the non-trivial direction by induction on n the length of a winning
string. So assume that any winning string in the wraparound game of length j < n
is a winning string in the standard same game. Assume S is a winning n-string in
the wraparound game. Consider the case where we remove a run of length k that
wraps around. Then we can rotate S to riS for some integer i so that this run
does not wrap around and eliminate it using the standard same game rules. This
produces a winning (n− k)-string in the wraparound game which by our induction
hypothesis is a winning string in the standard same game. Thus riS is a winning
string in the standard same game so that Proposition 2 implies that S is a winning
string in the standard same game. �

For what follows, it is advantageous to use the wraparound game and Corollary
2 allows us to do this. That is, for an n-string we always consider the first digit
to be consecutive to the n’th digit so that runs of consecutive identical digits wrap
around.

Lemma 3. Given any non-trivial losing binary n-string S, there is a rotation riS
that can be reduced to a single digit in the standard same game.

Proof. Assume S is a non-trivial losing n-string so that S must contain a run of two
or more consecutive identical digits (recall that runs may wrap around!). When we
remove this run in the wraparound game, the two digits on either side are identical,
so we bring them together and remove them and any other identical digits within
the run. This brings together two more identical digits which we remove in a similar
fashion. Eventually this must terminate with a single digit ai in S for 1 ≤ i ≤ n
by our assumption that S is a losing string.

Consider the rotation ri−1S making ai the first digit. Because we do not remove
ai, placing it as the first digit ensures that no run we removed in S will wrap around
in ri−1S. Thus, all the removals performed on S become allowable removals in the
standard same game when performed on ri−1S. �

We now consider the structure of losing G-orbits. The following two propositions
establish that every losing G-orbit of Qn has size 2n.
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Proposition 4. Let S be a non-trivial binary n-string. Assume that S = rkS for
some k, 0 < k < n. Then S is a winning string.

Proof. Choose the smallest positive k for which rkS = S. Then any two digits
separated by k places (mod n) are identical. Because rn(S) = S it follows by prop-
erties of the greatest common denominator that rgcd(k,n)(S) = S. Thus, because
of our choice of k, we have that gcd(k, n) = k and S repeats its first k digits n/k
times.

Let the string T of length k be the first k digits of S. If T is a winning string,
then it follows that S is a winning string. So assume T is a losing string. Because
S is non-trivial, T must also be non-trivial. By Lemma 3 there is a rotation of T ,
rjT which can be reduced to a single digit using the standard same game rules.
Then the first k digits of rjS are rjT which repeat n/k times. Now reduce each
copy of rjT to a single digit, leaving a single run of n/k consecutive identical digits.
Finally, we remove this run of digits, proving that rjS, and therefore S, is a winning
string. �

Proposition 5. Let S be a non-trivial binary n-string. Assume that crkS = S for
some k, 0 < k < n. Then S is a winning string.

Proof. Let k be the smallest positive number for which crkS = S. Then the first
k digits of S are the complement of the next k digits. Similarly, the next k digits
must be the complement of these, meaning they are the same as the first k digits.
Therefore, the first 2k digits of S will be repeated over the length of S. If n > 2k,
then this pattern is repeated at least twice and by the previous result S must be
a winning string. So we are only concerned with the case where n = 2k, and the
pattern appears only once.

We prove this case by induction on n the length of our string S. So assume any
non-trivial string S of length j < n composed of a string followed by its complement
is a winning string. Let S be a string of length n. Because S is non-trivial, we can
rotate it to riS for some i so that the first k digits contains a run of consecutive
identical digits. Let T be the first k digits of riS, so that riS consists of T followed
by cT . Then we can remove a run from T to produce T ′ and remove that run’s
complement from cT to produce cT ′. This creates a string S′ of length less than n
composed of T ′ followed by cT ′. If S′ is trivial, then riS consists of a single run of
1’s and a single run of 0’s and so it is a winning string. Our induction hypothesis
covers the other case. �

Thus we know that the cardinality of the orbit of a losing string S under G is
2n. Otherwise, S would be a winning string. What remains to be shown is that
there are Fn−2 losing G-orbits of Qn, excluding the orbit of trivial strings. To this
end, we define a transform on binary n-strings.

Definition. Given a binary string S of length n, we define the indexing string of
S, denoted I(S) as follows. I(S) is a binary string of length n such that for i < n,
the i’th element of I(S) is 1 if the i’th element of S is different from the i + 1’st
element of S and 0 if the i’th element of S is the same as the i + 1’st element. For
i = n, we wraparound. That is, the n’th element of I(S) is 1 if the n’th element of
S is different from the first element and the condition for 0 is similar.

Notice the following properties of indexing strings. First, for any binary string
S, I(S) = I(cS). Second, I(rS) = rI(S). We also have the following proposition.
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Proposition 6. Given S, The number of 1’s in the indexing string I(S) is even.

Proof. The number of 1’s counts the number of times that S alternates from 0 to
1 or 1 to 0. If S alternates from 0 to 1 it must at some point alternate back from
1 to 0 because we consider S as wrapping around at the end. �

We now define a third game, the indexing game. The moves of this game are
performed on finite binary strings containing an even number of 1’s. Let S be an
n-string in the indexing game with a run of k ≥ 1 consecutive 0’s (where the first
digit is consecutive to the n’th). Then this run of 0’s is flanked by two 1’s, one on
each side. We define a reduction rule by removing the run of 0’s and replacing
the two flanking 1’s with a single zero, producing an (n−k−1)-string. A winning
string in the indexing game is a string in the indexing game that can be reduced
to just a run of k > 1 0’s.

Proposition 7. Let T be a binary n-string with an even number of 1’s. Then
T = I(S) for some binary string S. T is a winning string in the indexing game if
and only if S is a winning string in the wraparound game.

Proof. Let T be defined as above. It is trivial to note that T = I(S) for some
binary n-string S. We will reduce I(S) and S simultaneously using corresponding
reduction rules. Notice that corresponding to a run of length k in S, we have (k−1)
0’s in T . If our run takes up the entire string S, then T is just 0’s. Then S and
T = I(S) are both winning strings in their respective games. If our run ends, then
it alternates to the opposite digit at both ends. Thus, we must have 1’s flanking
our corresponding 0’s in I(S). When we eliminate the run in S to create a binary
(n − k)-string S′, we bring flanking digits together to create another run. Thus,
removing the (k−1) 0’s in I(S) in the indexing game will reduce T = I(S) to I(S′).
If S is a winning string, then some sequence of removals takes a S to a single run
of identical digits. Then some sequence of removals takes I(S) to a single run of
two or more 0’s and the converse is also true. �

Example. The winning string S = 11101100 can be reduced to null by the steps

1110{11}00 7→ 111{000} 7→ {111} 7→ ∅.
In each step above the digits within brackets are simply removed. The transform

I(S) = 00110101 can be reduced analogously with the steps

001{101}01 7→ 00{1001} 7→ {000} 7→ ∅.
In the above the brackets are replaced with a single 0 until we have a run of 0’s.

Notice that an indexing string composed of a single run of 1’s and a single run
of 0’s is always a losing string. We now present a very easy condition for telling
when S is a losing string by looking at I(S).

Proposition 8. Let S be a non-trivial binary n-string. Then I(S) is a binary
n-string with an even number of ones 2m 0 ≤ m < n/2. S is a losing string if and
only if there is a run of 1’s in I(S) strictly greater than m.

Proof. (⇐) If a string has a run of m + 1 or more 1’s we call this a main run. So
assume I(S) has a main run. Notice that there are at most (m− 1) 1’s not in the
main run. Each elimination step that removes a 1 from the main run also removes
a 1 that is not in the main run. Since there are more 1’s in the main run than 1’s
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outside the main run, we cannot eliminate the main run and leave a run of two or
more 0’s.

(⇒) We prove this by induction on n, the length of our indexing string. Thus
assume any indexing string of length j < n without a main run is a winning string.
Say an n-string I(S) has no run of m + 1 or more 1’s where 2m is the number of
1’s in I(S). We wish to prove that I(S) is a winning string. Find a run q of 1’s in
I(S) that has the maximal number of 1’s. Reduce I(S) to I(S′) by removing a 1
from this maximal run and a 1 from some other run. Then I(S′) has (2m− 2) 1’s.

Suppose (for the sake of contradiction) I(S′) has a run s′ of 1’s of length m −
1 + 1 = m or greater so that I(S′) is a losing string. Then we did not remove from
a run s in I(S) to produce s′. Otherwise, s would have m + 1 or more 1’s. Then
s has m 1’s (it cannot have more), must be a maximal run, and must be different
from q which we now know must have m 1’s. Then there are only two runs because
there are only 2m 1’s. But when we removed from our maximal run, we must have
removed from s as well which gives our contradiction. �

Thus given an indexing string with 2m 1’s, we know that it is a losing string just
by looking at the configuration of its 1’s. It loses if it has a run of m+1 or more 1’s
and wins if it has no such run. Also notice that a losing string cannot have more
than one main run because it only has 2m 1’s.

Any losing indexing string must have at least two 1’s. Thus, we can choose our
losing indexing n-strings by picking an even number 2m, 0 < m < n/2, of 1’s,
making sure we have at least m + 1 gathered together in a group and throwing the
rest of the 1’s anywhere else in the string. This group of m+1 or more 1’s we once
again call the main run. We now present our main theorem.

Theorem 9. The number of non-trivial losing strings of length n in the same game
is 2nFn−2 for all n.

Proof. We define an oriented losing string to be an indexing losing string with
2m 1’s such that the first m + 1 digits are all 1’s and the last digit is a 0. That is,
we place the main run at the beginning of the string. Let T be an oriented losing
string. Then T = I(S) for some losing string S in the same game. Notice that
T = I(cS) and rT = I(rS). Thus, we use T = I(S) as the unique representative of
the orbit of S under G. There is a way to count these oriented losing strings that
gives the Fibonacci recurrence.

Because we exclude the trivial strings, we exclude the case where an even in-
dexing string is entirely composed of 1’s. Consider all the oriented losing indexing
n-strings where we have a 1 placed two slots to the right of our main run (there
is a 0 separating this 1 from the end of our main group). We claim that the num-
ber of losing strings of this form is equal to the number of losing strings of length
n− 2. The one-to-one correspondence is given by removing the 1 that is two slots
to the right of our main run and removing a 1 in our main run to produce a losing
(n − 2)-string. By removing a 1 both from outside and inside the main run, we
ensure that the resulting (n−2)-string is still a losing string (that it has a main run
of requisite length). The inverse of this is taking an (n− 2)-losing string, inserting
a 1 to the main run and inserting a 1 two slots to the right of the main run. The
above is illustrated with the following corresponding strings,

1111{1}0{1}0110↔ 111100110.
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The first is a losing oriented indexing 11-string, the second is its corresponding
losing oriented indexing 9-string. We remove or add the bracketed digits depending
on the direction of the correspondence.

It is trivial to note that the number of losing indexing n-strings with a 0 placed
two slots the right of the main group is the number of losing (n − 1)-strings. We
simply add or remove that 0. Thus we have the recurrence. Notice that the number
of non-trivial oriented indexing losing 2-strings is F0 = 0 and there is only F1 = 1
oriented indexing losing 3-string: 110. Thus we have our theorem. �
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