login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065177 Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct. 7

%I

%S 1,0,1,0,1,1,0,2,2,1,0,3,6,3,1,0,6,15,12,4,1,0,9,42,42,20,5,1,0,18,

%T 107,156,90,30,6,1,0,30,294,554,420,165,42,7,1,0,56,780,2028,1910,930,

%U 273,56,8,1,0,99,2128,7350,8820,5155,1806,420,72,9,1,0,186,5781,26936

%N Table M(n,b) (columns: n >= 1, rows: b >= 0) gives the number of site swap juggling patterns with exact period n, using exactly b balls, where cyclic shifts are not counted as distinct.

%H G. C. Greubel, <a href="/A065177/b065177.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Joe Buhler and R. L. Graham, <a href="http://www.cecm.sfu.ca/organics/papers/buhler/index.html">Juggling Drops and Descents</a>, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.

%H Juggling Information Service, <a href="http://www.juggling.org/bin/mfs/JIS/help/siteswap/">Site Swap FAQs</a>

%F Row n is the inverse Euler transform of j-> n^(j-1). - _Alois P. Heinz_, Jun 23 2018

%e Upper left corner starts as:

%e 1, 0, 0, 0, 0, ...

%e 1, 1, 2, 3, 6, ...

%e 1, 2, 6, 15, 42, ...

%e 1, 3, 12, 42, 156, ...

%e 1, 4, 20, 90, 420, ...

%e ...

%p [seq(DistSS_table(j),j=0..119)]; DistSS_table := (n) -> DistSS((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+1, (n-((trinv(n)*(trinv(n)-1))/2)));

%p with(numtheory); DistSS := proc(n,b) local d,s; s := 0; for d in divisors(n) do s := s+mobius(n/d)*((b+1)^d - b^d); od; RETURN(s/n); end;

%t trinv[n_] := Floor[(1 + Sqrt[8 n + 1])/2];

%t DistSS[n_, b_] := DivisorSum[n, MoebiusMu[n/#]*((b + 1)^# - b^#)&] /n;

%t a[n_] := DistSS[(((trinv[n] - 1)*(((1/2)*trinv[n]) + 1)) - n) + 1, (n - ((trinv[n]*(trinv[n] - 1))/2))];

%t Table[a[n], {n, 0, 119}] (* _Jean-Fran├žois Alcover_, Mar 06 2016, adapted from Maple *)

%Y Row 1: A059966, row 2: A065178, row 3: A065179, row 4: A065180.

%Y Column 1: A002378, column 2: A059270.

%Y Main diagonal gives A306173.

%Y Cf. also A065167. trinv given at A054425.

%K nonn,tabl

%O 0,8

%A _Antti Karttunen_, Oct 19 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 12:50 EST 2019. Contains 329958 sequences. (Running on oeis4.)