

A065167


Table T(n,k) read by antidiagonals, where the kth row gives the permutation t>t+k of Z, folded to N (k >= 0, n >= 1).


8



1, 2, 2, 3, 4, 4, 4, 1, 6, 6, 5, 6, 2, 8, 8, 6, 3, 8, 4, 10, 10, 7, 8, 1, 10, 6, 12, 12, 8, 5, 10, 2, 12, 8, 14, 14, 9, 10, 3, 12, 4, 14, 10, 16, 16, 10, 7, 12, 1, 14, 6, 16, 12, 18, 18, 11, 12, 5, 14, 2, 16, 8, 18, 14, 20, 20, 12, 9, 14, 3, 16, 4, 18, 10, 20, 16, 22, 22, 13, 14, 7, 16, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Simple periodic site swap permutations of natural numbers.
Row n of the table (starting from n=0) gives a permutation of natural numbers corresponding to the simple, infinite, periodic site swap pattern ...nnnnn...


LINKS

Table of n, a(n) for n=0..82.
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507  519.
Juggling Information Service, Site Swap FAQs


FORMULA

Let f: Z > N be given by f(z) = 2z if z>0 else 2z+1, with inverse g(z) = z/2 if z even else (1z)/2. Then the nth term of the kth row is f(g(n)+k).


EXAMPLE

Table begins:
1 2 3 4 5 6 7 ...
2 4 1 6 3 8 5 ...
4 6 2 8 1 10 3 ...
6 8 4 10 2 12 1 ...


MAPLE

PerSS_table := (n) > PerSS((((trinv(n)1)*(((1/2)*trinv(n))+1))n)+1, (n((trinv(n)*(trinv(n)1))/2))); PerSS := (n, c) > Z2N(N2Z(n)+c);
N2Z := n > ((1)^n)*floor(n/2); Z2N := z > 2*abs(z)+`if`((z < 1), 1, 0);
[seq(PerSS_table(j), j=0..119)];


CROSSREFS

Successive rows and associated site swap sequences, starting from the zeroth row: (A000027, A000004), (A065164, A000012), (A065165, A007395), (A065166, A010701). Cf. also A065171, A065174, A065177. trinv given at A054425.
Sequence in context: A086416 A168148 A147968 * A300404 A175214 A095395
Adjacent sequences: A065164 A065165 A065166 * A065168 A065169 A065170


KEYWORD

nonn,tabl


AUTHOR

Antti Karttunen, Oct 19 2001


STATUS

approved



