This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065164 Permutation t->t+1 of Z, folded to N. 6
 2, 4, 1, 6, 3, 8, 5, 10, 7, 12, 9, 14, 11, 16, 13, 18, 15, 20, 17, 22, 19, 24, 21, 26, 23, 28, 25, 30, 27, 32, 29, 34, 31, 36, 33, 38, 35, 40, 37, 42, 39, 44, 41, 46, 43, 48, 45, 50, 47, 52, 49, 54, 51, 56, 53, 58, 55, 60, 57, 62, 59, 64, 61, 66, 63, 68, 65, 70, 67, 72, 69, 74 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Corresponds to simple periodic asynchronic site swap pattern ...111111... (tossing one ball from hand to hand forever). This permutation consists of a single infinite cycle. This is, starting at a(2) = 4, the same as the "increasing oscillating sequence" shown in Proposition 3.1, p.7 and plotted in the right of figure 1, of Vatter. The same paper, p.4, cites Comtet and uses without giving the A-number of A003319. Abstract: We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley-Wilf limit) at least lambda = approx 2.48187, the unique real root of x^5-2x^4-2x^2-2x-1, thereby establishing a conjecture of Albert and Linton. - Jonathan Vos Post, Jul 18 2008 REFERENCES Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 819. LINKS Michael H. Albert, Robert Brignall, Vincent Vatter, Large infinite antichains of permutations, arXiv:1212.3346 [math.CO], 2012. Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519. Jay Pantone, Vincent Vatter, Growth rates of permutation classes: categorization up to the uncountability threshold, arXiv:1605.04289 [math.CO], 2016. Vincent Vatter, Permutation classes of every growth rate (a.k.a. Stanley-Wilf limit) above 2.48187.., arXiv:0807.2815 [math.CO], 2008-2009. Vincent Vatter, Permutation classes, arXiv:1409.5159 [math.CO], 2014. Index entries for linear recurrences with constant coefficients, signature (1,1,-1). FORMULA Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)+1). a(n) = n + 2*(-1^n) for n > 1. - Frank Ellermann, Feb 12, 2002 a(n) = 2*n-a(n-1)-1, n>2. - Vincenzo Librandi, Dec 07 2010, corrected by R. J. Mathar, Dec 07 2010 From Colin Barker, Feb 18 2013: (Start) a(n) = a(n-1) + a(n-2) - a(n-3) for n>4. G.f.: x*(3*x^3-5*x^2+2*x+2) / ((x-1)^2*(x+1)). (End) MAPLE ss1 := [seq(PerSS(n, 1), n=1..120)]; PerSS := (n, c) -> Z2N(N2Z(n)+c); N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1), 1, 0); CROSSREFS Row 1 of A065167. Obtained by composing permutations A014681 and A065190. Inverse permutation: A065168. Sequence in context: A225679 A081879 A066248 * A138124 A128860 A019680 Adjacent sequences:  A065161 A065162 A065163 * A065165 A065166 A065167 KEYWORD nonn,easy AUTHOR Antti Karttunen, Oct 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 13:06 EDT 2019. Contains 328030 sequences. (Running on oeis4.)