login
A065135
Numbers m such that prime(m) = pi(m)*k + 1 for some k.
1
3, 4, 6, 7, 10, 11, 14, 21, 37, 45, 47, 53, 55, 63, 75, 81, 101, 115, 121, 125, 136, 183, 209, 230, 271, 313, 319, 327, 348, 377, 399, 425, 460, 575, 581, 738, 786, 792, 850, 881, 917, 1076, 1110, 1152, 1246, 1519, 1740, 2062, 2074, 2119, 2144, 2327, 2361
OFFSET
1,1
FORMULA
Solutions to Mod[A000040(x), A000720(x)]=1.
Values satisfying A065133(x)=1.
EXAMPLE
x=581 is a term because prime(581) = 4211 = 106*40 + 1 = 40*pi(581) + 1.
PROG
(PARI) isok(m) = if (m>1, prime(m) % primepi(m) == 1); \\ Michel Marcus, Mar 04 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 15 2001
STATUS
approved