login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065101 a(0) = c, a(1) = p*c^3; a(n+2) = p*c^2*a(n+1) - a(n), for p = 3, c = 2. 1
2, 24, 286, 3408, 40610, 483912, 5766334, 68712096, 818778818, 9756633720, 116260825822, 1385373276144, 16508218487906, 196713248578728, 2344050764456830, 27931895924903232, 332838700334381954 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,100

Tanya Khovanova, Recursive Sequences

J.-P. Ehrmann et al., Problem POLYA002, Integer pairs (x,y) for which (x^2+y^2)/(1+pxy) is an integer.

Index entries for linear recurrences with constant coefficients, signature (12,-1).

FORMULA

G.f.: 2/(1-12*x+x^2).

a(n) = 2*A004191(n). - R. J. Mathar, Sep 27 2014

MATHEMATICA

a[0] = c; a[1] = p*c^3; a[n_] := a[n] = p*c^2*a[n - 1] - a[n - 2]; p = 3; c = 2; Table[ a[n], {n, 0, 20} ]

PROG

(PARI): polya002(3, 2, 18). For definition of function polya002 see A052530.

(PARI) { p=3; c=2; k=p*c^2; for (n=0, 100, if (n>1, a=k*a1 - a2; a2=a1; a1=a, if (n, a=a1=k*c, a=a2=c)); write("b065101.txt", n, " ", a) ) } [From Harry J. Smith, Oct 07 2009]

CROSSREFS

Cf. A052530.

Sequence in context: A221082 A002006 A230129 * A052739 A135389 A065513

Adjacent sequences:  A065098 A065099 A065100 * A065102 A065103 A065104

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane, Nov 12 2001

EXTENSIONS

Gen. func. from Floor van Lamoen, Feb 07 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 13:53 EST 2017. Contains 295001 sequences.