login
A065050
Prime numbers in the triangle of Eulerian numbers.
1
11, 1013, 15619, 16369, 65519, 478271, 13824739, 67108837, 1125899906842573, 72057594037927879, 1180591620717411303353, 2153693845981967454679177, 12086992684284175368032851, 22528399544594441658590663774175461
OFFSET
1,1
LINKS
EXAMPLE
Pairs (n, k) such that Eulerian(n, k) is prime are (4, 2), (10, 2), (8, 4), (14, 2), (16, 2), (12, 3), (15, 3), (26, 2), (50, 2), (56, 2), (70, 2), (51, 3), (27, 9), (72, 3), (116, 2), (87, 3), (183, 3).
PROG
(PARI) Eulerian(n, k)=sum(j=0, k, (-1)^j*(k-j)^n*binomial(n+1, j));
lista(nn) = {my(list=List()); for (n=1, nn, for (k=1, n, if (ispseudoprime(p=Eulerian(n, k)), listput(list, p)); ); ); Vec(Set(list)); } \\ Michel Marcus, May 25 2022
CROSSREFS
Sequence in context: A267606 A303786 A015511 * A099440 A073903 A069710
KEYWORD
nonn
AUTHOR
Henry Bottomley, Nov 06 2001
EXTENSIONS
More terms from Randall L Rathbun, Jan 21 2002
STATUS
approved