This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A065033 1 appears three times, other numbers twice. 11
 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Gives the number of terms in n-th row of many common tables. Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - Reinhard Zumkeller, Apr 24 2005 a(n) = length of run n+1 of consecutive 4s in A254338. - Reinhard Zumkeller, Feb 27 2015 This is the Engel expansion of A070910 + A096789. - Benedict W. J. Irwin, Dec 16 2016 LINKS Harry J. Smith, Table of n, a(n) for n = 0..1000 FORMULA a(0)=a(1)=a(2)= 1, a(3)=2, a(n) = a(n-1)+a(n-2)-a(n-3) for n>3 . G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). - Philippe Deléham, Sep 28 2006 a(n) = (3/4)+(1/4)*(-1)^(n-1)+(1/2)*(n-1)+[C(2*n,n) mod 2], with n>=0 - Paolo P. Lava, Nov 20 2008 a(n) = floor((n+1)/2) + 0^n. - Reinhard Zumkeller, Feb 27 2015 PROG (PARI) { for (n=0, 1000, if (n<3, a=1, if (n%2, a++)); write("b065033.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 03 2009 (Haskell) a065033 n = 0 ^ n + div (n + 1) 2  -- Reinhard Zumkeller, Feb 27 2015 CROSSREFS Cf. A004526, A008619. Cf. A254338. Sequence in context: A111660 A244325 A168050 * A001057 A127365 A130472 Adjacent sequences:  A065030 A065031 A065032 * A065034 A065035 A065036 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 04 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 23:01 EDT 2019. Contains 324222 sequences. (Running on oeis4.)