login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064961 Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1. 2
1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..32

Andrew R. Booker, The Nth Prime Page

N. Fernandez, An order of primeness, F(p)

N. Fernandez, An order of primeness [cached copy, included with permission of the author]

MATHEMATICA

Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a

CROSSREFS

Cf. A007097, A006508 & A064960, see also A057450, A057451, A057452, A057453, A057456 & A057457 and A049076, A049077, A049078, A049079, A049080 & A049081.

Sequence in context: A234576 A076586 A240266 * A137053 A214328 A310921

Adjacent sequences:  A064958 A064959 A064960 * A064962 A064963 A064964

KEYWORD

nonn

AUTHOR

Robert G. Wilson v, Oct 29 2001

EXTENSIONS

a(24)-a(26) corrected and a(27)-a(28) added by Chai Wah Wu, Aug 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 17:36 EST 2019. Contains 329865 sequences. (Running on oeis4.)