login
A064935
Numbers k such that (k+3)^(k+2) mod (k+1) = k.
1
4, 64, 376, 1188, 1468, 25804, 58588, 134944, 137344, 170584, 272608, 285388, 420208, 538732, 592408, 618448, 680704, 778804, 1163064, 1520440, 1700944, 2099200, 2831008, 4020028, 4174168, 4516108, 5059888, 5215768, 5447272
OFFSET
1,1
EXAMPLE
(4+3)^(4+2) mod (4+1) = 7^6 mod 5 = 117649 mod 5 = 4, so 4 is a term.
PROG
(PARI) isok(k) = Mod(k+3, k+1)^(k+2) == k; \\ Michel Marcus, Jul 12 2021
CROSSREFS
Equals A055685(n+1) - 2.
Sequence in context: A222557 A249483 A165516 * A030098 A087045 A169801
KEYWORD
nonn
AUTHOR
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 26 2001
STATUS
approved