The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064856 Stirling transform of Catalan numbers: a(n) = Sum_{k=0..n} stirling2(n,k)*binomial(2*k,k)/(k+1). 7
 1, 1, 3, 12, 59, 338, 2185, 15613, 121553, 1020170, 9154963, 87276995, 879242215, 9319182044, 103537712361, 1201967382478, 14540040004755, 182840037042560, 2384985091689409, 32209645344213417, 449608555748234353, 6476887237235672388, 96156363230696213447 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Robert Israel, Table of n, a(n) for n = 0..400 FORMULA O.g.f.: Sum_{n>=1} C(2*n,n)/(n+1) * x^n / Product_{k=0..n} (1-k*x). - Paul D. Hanna, Jul 20 2011 E.g.f.: exp(2*exp(z)-2)*(BesselI(0, 2*exp(z)-2)-BesselI(1, 2*exp(z)-2)). Representation as a sum of an infinite series involving the confluent hypergeometric function 1F1, in Maple notation: a(n)=evalf(sum('k'^n*2^(2*'k')*GAMMA('k'+1/2)*evalf(hypergeom(['k'+1/2], ['k'+2], -4))/(sqrt(Pi)*'k'!*('k'+1)!), 'k'=0..infinity)), n=0, 1... E.g.f.: hypergeom([1/2], [2], 4*(exp(x)-1)). - Vladeta Jovovic, Sep 11 2003 MAPLE seq(add(Stirling2(n, k)*binomial(2*k, k)/(k+1), k=0..n), n=0..50); # Robert Israel, Sep 16 2016 MATHEMATICA Table[Sum[StirlingS2[n, k] Binomial[2k, k]/(k+1), {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Nov 01 2011 *) PROG (PARI) {a(n)=polcoeff(sum(m=0, n, (2*m)!/(m!*(m+1)!)*x^m/prod(k=1, m, 1-k*x+x*O(x^n))), n)} /* Paul D. Hanna, Jul 20 2011 */ CROSSREFS Cf. A000108, A066053. Sequence in context: A105668 A192768 A179325 * A080337 A196710 A196711 Adjacent sequences:  A064853 A064854 A064855 * A064857 A064858 A064859 KEYWORD nice,nonn AUTHOR Karol A. Penson, Oct 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 16:02 EST 2021. Contains 340352 sequences. (Running on oeis4.)