login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064855 a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n. 3

%I

%S 1,2,0,14,16,10,66,21,321,917,2037,1550,2420,15152,27439,46731,110953,

%T 137148,336949,703202,805647,181132,5835407,3343039,21816283,18528238,

%U 95129681,241918238,311938330,48698222,1539688558,3481498150

%N a(n) = (((6^n mod 5^n) mod 4^n) mod 3^n) mod 2^n.

%C A generalization of A002380, A064536 and A064854. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 6^n into like powers as follows: 6^n = c5*5^n + c4*4^n + c3*3^n + c2*2^n + c1*1^n.

%H Harry J. Smith, <a href="/A064855/b064855.txt">Table of n, a(n) for n = 1..200</a>

%F n = 8: 6^8 = 1679616 = 4*390625 + 1*65536 + 7*6561 + 22*256 + 21*1 where a(8)=21, the last coefficient and here 6^8 is decomposed into 4 + 1 + 7 + 22 + 21 = 55 like (8th) powers.

%t Table[Fold[Mod,6^n,Range[5,2,-1]^n],{n,40}] (* _Harvey P. Dale_, Mar 14 2011 *)

%o (PARI) { for (n=1, 200, a=(((6^n%5^n)%4^n)%3^n)%2^n; write("b064855.txt", n, " ", a) ) } \\ _Harry J. Smith_, Sep 28 2009

%Y Cf. A002380, A064536, A064854, A064855, A060692, A064628-A064631.

%K nonn

%O 1,2

%A _Labos Elemer_, Oct 08 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 2 19:18 EST 2021. Contains 341756 sequences. (Running on oeis4.)