

A064854


a(n) = ((5^n mod 4^n) mod 3^n) mod 2^n.


2



1, 0, 7, 0, 21, 37, 118, 56, 19, 428, 808, 3920, 2256, 15240, 28312, 46733, 128931, 251439, 434788, 645833, 1397733, 1179155, 7185704, 1551886, 33308648, 65879944, 121274199, 65829274, 228529703, 248939750, 799831532, 2835988891
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

A generalization of A002380 and A064536. It arises also as a coefficient (=c1) of 1^n=1 in a special (greedy) decomposition of 5^n into like powers as follows: 5^n = c4*4^n + c3*3^n + c2*2^n + c1*1^n.


LINKS

Harry J. Smith, Table of n, a(n) for n = 1..200


FORMULA

n = 7: 5^7 = 78125 = 4*16384 + 5*2187 + 12*128 + 118*1, where a(7)=118, the last coefficient.


PROG

(PARI) { for (n=1, 200, a=((5^n%4^n)%3^n)%2^n; write("b064854.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009


CROSSREFS

Cf. A002380, A064536, A064855, A060692, A064628A064631.
Sequence in context: A246919 A167299 A282071 * A199917 A279991 A282489
Adjacent sequences: A064851 A064852 A064853 * A064855 A064856 A064857


KEYWORD

nonn


AUTHOR

Labos Elemer, Oct 08 2001


STATUS

approved



