login
"Inverse permutation" to A064537. Limits of the recursion b(i+1)=B_[i](b(i)), where b(0)=n and B_[k](j) = B_[k-1](j) + k, k+1 <= j <= 2k; B_[k](j) = B_[k-1](j) - k, 2k+1 <= j <= 3k; B_[k](j) = B_[k-1](j) otherwise. Set a(n)=0 if b tends to infinity.
3

%I #4 Jul 10 2011 18:39:26

%S 1,11,2,5,3,6,4,21,36,15,10,7,146,8,105,9,16,46,80,30,12,20,13,480,14,

%T 40,25,26,4340,17,215,18,31,19,90,55,261,35,22,61,23,65,24,41,115,71,

%U 330,27,45,28,365,29,136,50,51,86,32,3136,33,56,34,96,161,3490,60,37,171,38,296

%N "Inverse permutation" to A064537. Limits of the recursion b(i+1)=B_[i](b(i)), where b(0)=n and B_[k](j) = B_[k-1](j) + k, k+1 <= j <= 2k; B_[k](j) = B_[k-1](j) - k, 2k+1 <= j <= 3k; B_[k](j) = B_[k-1](j) otherwise. Set a(n)=0 if b tends to infinity.

%C The sequence would be the inverse permutation to A064537 if zero never appears.

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%K easy,nonn

%O 1,2

%A Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Oct 20 2001