login
A064771
Let S(n) = set of divisors of n, excluding n; sequence gives n such that there is a unique subset of S(n) that sums to n.
16
6, 20, 28, 78, 88, 102, 104, 114, 138, 174, 186, 222, 246, 258, 272, 282, 304, 318, 354, 366, 368, 402, 426, 438, 464, 474, 490, 496, 498, 534, 572, 582, 606, 618, 642, 650, 654, 678, 748, 762, 786, 822, 834, 860, 894, 906, 940, 942, 978, 1002, 1014, 1038
OFFSET
1,1
COMMENTS
Perfect numbers (A000396) are a proper subset of this sequence. Weird numbers (A006037) are numbers whose proper divisors sum to more than the number, but no subset sums to the number.
Odd elements are rare: the first few are 8925, 32445, 351351, 442365; there are no more below 100 million. See A065235 for more details.
A065205(a(n)) = 1. - Reinhard Zumkeller, Jan 21 2013
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..10000 (terms 1..200 from T. D. Noe, terms 201..5000 from Amiram Eldar)
EXAMPLE
Proper divisors of 20 are 1, 2, 4, 5 and 10. {1,4,5,10} is the only subset that sums to 20, so 20 is in the sequence.
MAPLE
filter:= proc(n)
local P, x, d;
P:= mul(x^d+1, d = numtheory:-divisors(n) minus {n});
coeff(P, x, n) = 1
end proc:
select(filter, [$1..2000]); # Robert Israel, Sep 25 2024
MATHEMATICA
okQ[n_]:= Module[{d=Most[Divisors[n]]}, SeriesCoefficient[Series[ Product[ 1+x^i, {i, d}], {x, 0, n}], n] == 1]; Select[ Range[ 1100], okQ] (* Harvey P. Dale, Dec 13 2010 *)
PROG
(Haskell)
a064771 n = a064771_list !! (n-1)
a064771_list = map (+ 1) $ elemIndices 1 a065205_list
-- Reinhard Zumkeller, Jan 21 2013
(Python)
from sympy import divisors
def isok(n):
dp = {0: 1}
for d in divisors(n)[:-1]:
u = {}
for k in dp.keys():
if (s := (d + k)) <= n:
u[s] = dp.get(s, 0) + dp[k]
if s == n and u[s] > 1:
return False
for k, v in u.items():
dp[k] = v
return dp.get(n, 0) == 1
print([n for n in range(1, 1039) if isok(n)]) # Darío Clavijo, Sep 17 2024
CROSSREFS
A005835 gives n such that some subset of S(n) sums to n. Cf. A065205.
Cf. A027751.
Sequence in context: A006039 A180332 A338133 * A006036 A308710 A376874
KEYWORD
nonn,nice
AUTHOR
Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 19 2001
EXTENSIONS
More terms from Don Reble, Jud McCranie and Naohiro Nomoto, Oct 22 2001
STATUS
approved