login
A064756
a(n) = n*10^n - 1.
5
9, 199, 2999, 39999, 499999, 5999999, 69999999, 799999999, 8999999999, 99999999999, 1099999999999, 11999999999999, 129999999999999, 1399999999999999, 14999999999999999, 159999999999999999, 1699999999999999999, 17999999999999999999, 189999999999999999999, 1999999999999999999999
OFFSET
1,1
LINKS
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
FORMULA
From Elmo R. Oliveira, Sep 07 2024: (Start)
G.f.: x*(100*x^2 - 10*x - 9)/((x - 1)*(10*x - 1)^2).
E.g.f.: 1 + exp(x)*(10*x*exp(9*x) - 1).
a(n) = 21*a(n-1) - 120*a(n-2) + 100*a(n-3) for n > 3.
a(n) = A126431(n) - 1 = A064748(n) - 2. (End)
MAPLE
k:= 10; f:= gfun:-rectoproc({1 + (k-1)*n + k*n*a(n-1) - (n-1)*a(n) = 0, a(1) = k-1}, a(n), remember): map(f, [$1..20]); # Georg Fischer, Feb 19 2021
MATHEMATICA
Array[# 10^# - 1 &, 18] (* Michael De Vlieger, Jan 14 2020 *)
PROG
(Magma) [ n*10^n-1: n in [1..20]]; // Vincenzo Librandi, Sep 16 2011
CROSSREFS
Cf. for a(n) = n*k^n - 1: -A000012 (k=0), A001477 (k=1), A003261 (k=2), A060352 (k=3), A060416 (k=4), A064751 (k=5), A064752 (k=6), A064753 (k=7), A064754 (k=8), A064755 (k=9), this sequence (k=10), A064757 (k=11), A064758 (k=12).
Sequence in context: A157594 A232276 A196910 * A197077 A093708 A052145
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 19 2001
STATUS
approved