login
A064713
Numbers k such that prime(k)^2 - k is prime.
2
1, 2, 6, 8, 20, 30, 42, 48, 50, 60, 68, 96, 110, 122, 132, 168, 204, 222, 234, 284, 306, 332, 336, 366, 378, 392, 398, 402, 420, 440, 474, 488, 492, 506, 516, 518, 530, 572, 594, 600, 650, 672, 680, 740, 756, 762, 770, 810, 870, 884, 888, 902, 920, 930, 938
OFFSET
1,2
LINKS
EXAMPLE
6 is in the sequence because prime(6)^2 - 6 = 169 - 6 = 163 is a prime.
MAPLE
A064713:=n->`if`(isprime(ithprime(n)^2-n), n, NULL): seq(A064713(n), n=1..2*10^3); # Wesley Ivan Hurt, Jan 21 2017
MATHEMATICA
Select[Range[1000], PrimeQ[Prime[#]^2-#]&] (* Harvey P. Dale, May 17 2013 *)
PROG
(PARI) { n=0; for (m=1, 10^9, if (isprime(prime(m)^2 - m), write("b064713.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 23 2009
CROSSREFS
Cf. A064361.
Sequence in context: A371238 A143481 A093968 * A162213 A100358 A134136
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Oct 13 2001
STATUS
approved