

A064673


Where the least prime p such that n = (p1)/(q1) and p > q is not the least prime == 1 (mod n) (A034694).


2



24, 32, 34, 38, 62, 64, 71, 76, 80, 92, 94, 104, 110, 117, 122, 124, 129, 132, 144, 149, 152, 154, 159, 164, 167, 182, 184, 185, 188, 201, 202, 206, 212, 214, 218, 220, 225, 227, 236, 242, 244, 246, 252, 264, 269, 272, 274, 286, 290, 294
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..50.


EXAMPLE

24 is in the sequence because (971)/(51) whereas the first prime ==1 (Mod 24) is 73. See the comment in A034694 about the multiplier k and it must differ from q1 or k+1 is not prime.


MATHEMATICA

NextPrim[n_] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Do[p = 2; While[q = (p  1)/n + 1; !PrimeQ[q]  q >= p, p = NextPrim[p]]; k = 1; While[ !PrimeQ[k*n + 1], k++ ]; If[p != k*n + 1, Print[n]], {n, 2, 300} ]


CROSSREFS

Cf. A064632, A064652.
Sequence in context: A266984 A217158 A214227 * A034782 A289554 A102374
Adjacent sequences: A064670 A064671 A064672 * A064674 A064675 A064676


KEYWORD

easy,nonn


AUTHOR

Robert G. Wilson v, Oct 16 2001


STATUS

approved



