

A064637


Setwise difference of A060132 and A059590. Those terms of A060132 which are not representable as a sum of distinct factorials.


3



16, 17, 40, 41, 60, 61, 62, 63, 136, 137, 160, 161, 180, 181, 182, 183, 288, 289, 290, 291, 294, 295, 296, 297, 304, 305, 316, 317, 450, 451, 452, 453, 736, 737, 760, 761, 780, 781, 782, 783, 856, 857, 880, 881, 900, 901, 902, 903, 1008, 1009, 1010, 1011
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

16 is included, as 16 = 220 in factorial base and by following the algorithm PermRevLexUnrankAMSD in A055089 we get the composition (2 3)(3 4) (1 2)(2 3) which, although consisting of different transpositions, is equal to the composition (4 2)(3 1) = 3412 produced by algorithm PermUnrank3R at A060117.


LINKS

Table of n, a(n) for n=0..51.


MAPLE

list_diff := proc(a, b) local c, e; c := []; for e in a do if(not member(e, b)) then c := [op(c), e]; fi; od; RETURN(c); end;


CROSSREFS

A064637 := list_diff(A060132, A059590),
Cf. A064477.
Sequence in context: A267029 A070869 A101196 * A115942 A052059 A041526
Adjacent sequences: A064634 A064635 A064636 * A064638 A064639 A064640


KEYWORD

nonn


AUTHOR

Antti Karttunen, Oct 02 2001


STATUS

approved



