login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064636 Number of derangements up to cyclic rotations; permutation siteswap necklaces, with no fixed points (no "zero-throws", i.e., empty hands, if we use the mapping Perm2SiteSwap1 of A060495 and A060498). 3
0, 0, 1, 2, 5, 12, 55, 270, 1893, 14864, 133749, 1334970, 14687195, 176214852, 2290820923, 32071104006, 481066907653, 7697064251760, 130850098582189, 2355301661033970, 44750731672347273, 895014631193654828, 18795307257304746591, 413496759611120779902, 9510425471105377569963, 228250211305338670543432 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This sequence counts derangements (enumerated by A000166) up to the same automorphism as permutations (enumerated by A000142) are subjected to in A061417.

LINKS

Table of n, a(n) for n=0..25.

Juggling Information Service, Site Swap notation

FORMULA

a(n) = Sum_{d|n} (1/n) * Phi(n/d) * Sum_{k=0..d} [ ((n/d)^(d-k)) * (((n/d)-1)^k) * A008290(d, k) ]. (Note: this abbreviated formula supposes that 0^0 = 1. For a practical implementation, see the Maple procedure below.)

MAPLE

with(numtheory); A064636 := proc(n) local d, k, s; s := 0; for d in divisors(n) do s := s + (1/n) * phi(n/d) * ( (((n/d)^d)*A000166(d)) + add((((n/d)^(d-k)) * (((n/d)-1)^k) * (A000166(d-k)*binomial(d, k))), k=1..d)); od; RETURN(s); end;

MATHEMATICA

Unprotect[Power]; 0^0 = 1; a[n_] := (1/n) DivisorSum[n, EulerPhi[n/#]*Sum[ (n/#)^(# - k)*(n/# - 1)^k*#!*Gamma[# - k + 1, -1]/(E*k!*(# - k)!), {k, 0, #}]&] // FunctionExpand; a[0] = 0; Table[a[n], {n, 0, 25}] (* Jean-Fran├žois Alcover, Mar 06 2016 *)

CROSSREFS

Sequence in context: A038576 A002358 A083699 * A293023 A145857 A264863

Adjacent sequences:  A064633 A064634 A064635 * A064637 A064638 A064639

KEYWORD

nonn

AUTHOR

Antti Karttunen, Oct 02 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 13 09:26 EST 2018. Contains 318086 sequences. (Running on oeis4.)