

A064614


Exchange 2 and 3 in the prime factorization of n.


13



1, 3, 2, 9, 5, 6, 7, 27, 4, 15, 11, 18, 13, 21, 10, 81, 17, 12, 19, 45, 14, 33, 23, 54, 25, 39, 8, 63, 29, 30, 31, 243, 22, 51, 35, 36, 37, 57, 26, 135, 41, 42, 43, 99, 20, 69, 47, 162, 49, 75, 34, 117, 53, 24, 55, 189, 38, 87, 59, 90, 61, 93, 28, 729, 65, 66, 67, 153, 46
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

A selfinverse permutation of the natural numbers.
a(1) = 1, a(2) = 3, a(3) = 2, a(p) = p for primes p > 3 and a(u * v) = a(u) * a(v) for u, v > 0.
A permutation of the natural numbers: a(a(n)) = n for all n and a(n) = n iff n = 6^k * m for k >= 0 and m > 0 with gcd(m, 6) = 1 (see A064615).
A000244 and A000079 give record values and where they occur.  Reinhard Zumkeller, Feb 08 2010
Completely multiplicative with a(2) = 3, a(3) = 2, and a(p) = p for primes p > 3.  Charles R Greathouse IV, Jun 28 2015


LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000
A. B. Frizell, Certain nonenumerable sets of infinite permutations. Bull. Amer. Math. Soc. 21 (1915), no. 10, 495499.
Index to divisibility sequences
Index entries for sequences that are permutations of the natural numbers


FORMULA

a(n) = A065330(n) * (2 ^ A007949(n)) * (3 ^ A007814(n)).  Reinhard Zumkeller, Jan 03 2011


EXAMPLE

a(15) = a(3*5) = a(3)*a(5) = 2*5 = 10;
a(16) = a(2^4) = a(2)^4 = 3^4 = 81;
a(17) = 17;
a(18) = a(2*3^2) = a(2)*a(3^2) = 3*a(3)^2 = 3*2^2 = 12.


MATHEMATICA

a[n_] := Times @@ Power @@@ (FactorInteger[n] /. {2, e2_} > {0, e2} /. {3, e3_} > {2, e3} /. {0, e2_} > {3, e2}); Table[a[n], {n, 1, 69}] (* JeanFrançois Alcover, Nov 20 2012 *)
a[n_] := n * Times @@ ({3/2, 2/3}^IntegerExponent[n, {2, 3}]); Array[a, 100] (* Amiram Eldar, Sep 20 2020 *)


PROG

(Haskell)
a064614 1 = 1
a064614 n = product $ map f $ a027746_row n where
f 2 = 3; f 3 = 2; f p = p
 Reinhard Zumkeller, Apr 09 2012, Jan 03 2011
(Python)
from operator import mul
from functools import reduce
from sympy import factorint
def A064614(n):
return reduce(mul, ((5p if 2<=p<=3 else p)**e for p, e in factorint(n).items())) if n > 1 else n
# Chai Wah Wu, Dec 27 2014
(PARI) a(n)=my(x=valuation(n, 2)valuation(n, 3)); n*2^x*3^x \\ Charles R Greathouse IV, Jun 28 2015


CROSSREFS

Cf. A064615, A000244, A000079, A253046, A253047, A027746.
Sequence in context: A268824 A306470 A251560 * A234747 A016650 A033313
Adjacent sequences: A064611 A064612 A064613 * A064615 A064616 A064617


KEYWORD

nonn,mult,nice,easy


AUTHOR

Reinhard Zumkeller, Sep 25 2001


STATUS

approved



