login
A064588
a(n) = (2^n)^12*((2^n)^2-1)*((2^n)^6-1)*((2^n)^8 + (2^n)^4+1).
4
0, 211341312, 67802350642790400, 19045158721552047314829312, 5172093060532095860985478879641600, 1392436772074860374668712252110467615424512, 374053097594236786223942368917529841587940071833600, 100427498158122178683906767552010902133066063134008553766912, 26959535297288219669523507545964171915704566051174598345329370726400
OFFSET
0,2
REFERENCES
R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
LINKS
Index entries for linear recurrences with constant coefficients, signature (357912576, -25619989209808896, 436628173228375692804096, -1838084202651691394631840301056, 1927370980879699955817476575520096256, -503398010432197925784784284250454618013696, 32477194699655007703444278420761908023599824896, -498857322545357921467016345185865338049043131006976, 1532495540865888858358347027150309183618739122183602176).
MATHEMATICA
Table[With[{c=2^n}, c^12 (c^2-1)(c^6-1)(c^8+c^4+1)], {n, 0, 10}] (* Harvey P. Dale, Oct 23 2024 *)
PROG
(PARI) { for (n=0, 50, p=(2^n)^2; a=p^6*(p - 1)*(p^3 - 1)*(p^4 + p^2 + 1); write("b064588.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 19 2009
(Python)
def A064588(n): return (m:=1<<(n<<1))*(m*(m*(m*(m*(m*(m*(m-1)+1)-2)+2)-2)+1)-1)+1<<12*n # Chai Wah Wu, Aug 20 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 17 2001
STATUS
approved