login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A064584 Order of twisted group 2G2(3^(2*n + 1)). 3
1512, 10073444472, 49825657439340552, 239189910264352349332632, 1144503123693984541835958820392, 5474370186265837734230137135972625592, 26183874281059869023477124043633901590825032, 125236728809915185354190019796969393286848248539352, 599003428666412716882958241970105468686115269921659258472 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985, p. xvi.

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,50

Index entries for linear recurrences with constant coefficients, signature (5321700,-2580612660198,18555620546801700,-12157665459056928801).

FORMULA

a(n) = q^6*(q^2-1)*(q^6+1), where q^2 = 3^(2*n+1).

G.f.: 1512*(1+59049*x)*(1+1281582*x+3486784401*x^2) / ((1-729*x)*(1-6561*x)*(1-531441*x)*(1-4782969*x)). - Colin Barker, Dec 25 2015

MATHEMATICA

LinearRecurrence[{5321700, -2580612660198, 18555620546801700, -12157665459056928801}, {1512, 10073444472, 49825657439340552, 239189910264352349332632}, 10] (* Harvey P. Dale, Sep 28 2016 *)

PROG

(PARI) { for (n=0, 50, q2 = 3^(2*n + 1); a=q2^3*(q2 - 1)*(q2^3 + 1); write("b064584.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 19 2009

(PARI) Vec(1512*(1+59049*x)*(1+1281582*x+3486784401*x^2) / ((1-729*x)*(1-6561*x)*(1-531441*x)*(1-4782969*x)) + O(x^10)) \\ Colin Barker, Dec 25 2015

CROSSREFS

Cf. A033669, A037251.

Sequence in context: A107523 A282253 A317477 * A318713 A252508 A031810

Adjacent sequences:  A064581 A064582 A064583 * A064585 A064586 A064587

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 17 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 16 04:26 EDT 2019. Contains 325064 sequences. (Running on oeis4.)