

A064537


Limit of the recursion B_[k] = P[k](B_[k1]), where B_[0] = (1,2,3,4,5,...) and P[k] is the permutation that permutes the entries k+j and 2k + j for all j = 1,..,k.


1



1, 3, 5, 7, 4, 6, 12, 14, 16, 11, 2, 21, 23, 25, 10, 17, 30, 32, 34, 22, 8, 39, 41, 43, 27, 28, 48, 50, 52, 20, 33, 57, 59, 61, 38, 9, 66, 68, 70, 26, 44, 75, 77, 79, 49, 18, 84, 86, 88, 54, 55, 93, 95, 97, 36, 60, 102, 104, 106, 65, 40, 111, 113, 115, 42, 71, 120, 122, 124
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Conjectured to be a permutation of the natural numbers.


LINKS

Table of n, a(n) for n=1..69.
Index entries for sequences that are permutations of the natural numbers


MAPLE

k := 200: a := [seq(j, j=1..3*k)]: for i from 1 to k do; a := [seq(a[j], j=1..i), seq(a[j], j=2*i+1..3*i), seq(a[j], j=i+1..2*i), seq(a[j], j=3*i+1..3*k)]; od: seq(a[j], j=1..i);


MATHEMATICA

k = 69; a = Range[1, 3k]; For[i = 1, i <= k, i++, a = Join[a[[1 ;; i]], a[[2i+1 ;; 3i]], a[[i+1 ;; 2i]], a[[3i+1 ;; 3k]]]]; a[[1 ;; k]] (* JeanFrançois Alcover, Oct 11 2012, after Maple *)


CROSSREFS

"Inverse": A064791.
Sequence in context: A204938 A101088 A134487 * A023899 A279321 A254863
Adjacent sequences: A064534 A064535 A064536 * A064538 A064539 A064540


KEYWORD

easy,nonn


AUTHOR

Klaus Strassburger (strass(AT)ddfi.uniduesseldorf.de), Oct 08 2001


STATUS

approved



